SUBROUTINE DLATTP( IMAT, UPLO, TRANS, DIAG, ISEED, N, A, B, WORK,
$ INFO )
*
* -- LAPACK test routine (version 3.1) --
* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
* November 2006
*
* .. Scalar Arguments ..
CHARACTER DIAG, TRANS, UPLO
INTEGER IMAT, INFO, N
* ..
* .. Array Arguments ..
INTEGER ISEED( 4 )
DOUBLE PRECISION A( * ), B( * ), WORK( * )
* ..
*
* Purpose
* =======
*
* DLATTP generates a triangular test matrix in packed storage.
* IMAT and UPLO uniquely specify the properties of the test
* matrix, which is returned in the array AP.
*
* Arguments
* =========
*
* IMAT (input) INTEGER
* An integer key describing which matrix to generate for this
* path.
*
* UPLO (input) CHARACTER*1
* Specifies whether the matrix A will be upper or lower
* triangular.
* = 'U': Upper triangular
* = 'L': Lower triangular
*
* TRANS (input) CHARACTER*1
* Specifies whether the matrix or its transpose will be used.
* = 'N': No transpose
* = 'T': Transpose
* = 'C': Conjugate transpose (= Transpose)
*
* DIAG (output) CHARACTER*1
* Specifies whether or not the matrix A is unit triangular.
* = 'N': Non-unit triangular
* = 'U': Unit triangular
*
* ISEED (input/output) INTEGER array, dimension (4)
* The seed vector for the random number generator (used in
* DLATMS). Modified on exit.
*
* N (input) INTEGER
* The order of the matrix to be generated.
*
* A (output) DOUBLE PRECISION array, dimension (N*(N+1)/2)
* The upper or lower triangular matrix A, packed columnwise in
* a linear array. The j-th column of A is stored in the array
* AP as follows:
* if UPLO = 'U', AP((j-1)*j/2 + i) = A(i,j) for 1<=i<=j;
* if UPLO = 'L',
* AP((j-1)*(n-j) + j*(j+1)/2 + i-j) = A(i,j) for j<=i<=n.
*
* B (output) DOUBLE PRECISION array, dimension (N)
* The right hand side vector, if IMAT > 10.
*
* WORK (workspace) DOUBLE PRECISION array, dimension (3*N)
*
* INFO (output) INTEGER
* = 0: successful exit
* < 0: if INFO = -k, the k-th argument had an illegal value
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ONE, TWO, ZERO
PARAMETER ( ONE = 1.0D+0, TWO = 2.0D+0, ZERO = 0.0D+0 )
* ..
* .. Local Scalars ..
LOGICAL UPPER
CHARACTER DIST, PACKIT, TYPE
CHARACTER*3 PATH
INTEGER I, IY, J, JC, JCNEXT, JCOUNT, JJ, JL, JR, JX,
$ KL, KU, MODE
DOUBLE PRECISION ANORM, BIGNUM, BNORM, BSCAL, C, CNDNUM, PLUS1,
$ PLUS2, RA, RB, REXP, S, SFAC, SMLNUM, STAR1,
$ STEMP, T, TEXP, TLEFT, TSCAL, ULP, UNFL, X, Y,
$ Z
* ..
* .. External Functions ..
LOGICAL LSAME
INTEGER IDAMAX
DOUBLE PRECISION DLAMCH, DLARND
EXTERNAL LSAME, IDAMAX, DLAMCH, DLARND
* ..
* .. External Subroutines ..
EXTERNAL DLABAD, DLARNV, DLATB4, DLATMS, DROT, DROTG,
$ DSCAL
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, DBLE, MAX, SIGN, SQRT
* ..
* .. Executable Statements ..
*
PATH( 1: 1 ) = 'Double precision'
PATH( 2: 3 ) = 'TP'
UNFL = DLAMCH( 'Safe minimum' )
ULP = DLAMCH( 'Epsilon' )*DLAMCH( 'Base' )
SMLNUM = UNFL
BIGNUM = ( ONE-ULP ) / SMLNUM
CALL DLABAD( SMLNUM, BIGNUM )
IF( ( IMAT.GE.7 .AND. IMAT.LE.10 ) .OR. IMAT.EQ.18 ) THEN
DIAG = 'U'
ELSE
DIAG = 'N'
END IF
INFO = 0
*
* Quick return if N.LE.0.
*
IF( N.LE.0 )
$ RETURN
*
* Call DLATB4 to set parameters for SLATMS.
*
UPPER = LSAME( UPLO, 'U' )
IF( UPPER ) THEN
CALL DLATB4( PATH, IMAT, N, N, TYPE, KL, KU, ANORM, MODE,
$ CNDNUM, DIST )
PACKIT = 'C'
ELSE
CALL DLATB4( PATH, -IMAT, N, N, TYPE, KL, KU, ANORM, MODE,
$ CNDNUM, DIST )
PACKIT = 'R'
END IF
*
* IMAT <= 6: Non-unit triangular matrix
*
IF( IMAT.LE.6 ) THEN
CALL DLATMS( N, N, DIST, ISEED, TYPE, B, MODE, CNDNUM, ANORM,
$ KL, KU, PACKIT, A, N, WORK, INFO )
*
* IMAT > 6: Unit triangular matrix
* The diagonal is deliberately set to something other than 1.
*
* IMAT = 7: Matrix is the identity
*
ELSE IF( IMAT.EQ.7 ) THEN
IF( UPPER ) THEN
JC = 1
DO 20 J = 1, N
DO 10 I = 1, J - 1
A( JC+I-1 ) = ZERO
10 CONTINUE
A( JC+J-1 ) = J
JC = JC + J
20 CONTINUE
ELSE
JC = 1
DO 40 J = 1, N
A( JC ) = J
DO 30 I = J + 1, N
A( JC+I-J ) = ZERO
30 CONTINUE
JC = JC + N - J + 1
40 CONTINUE
END IF
*
* IMAT > 7: Non-trivial unit triangular matrix
*
* Generate a unit triangular matrix T with condition CNDNUM by
* forming a triangular matrix with known singular values and
* filling in the zero entries with Givens rotations.
*
ELSE IF( IMAT.LE.10 ) THEN
IF( UPPER ) THEN
JC = 0
DO 60 J = 1, N
DO 50 I = 1, J - 1
A( JC+I ) = ZERO
50 CONTINUE
A( JC+J ) = J
JC = JC + J
60 CONTINUE
ELSE
JC = 1
DO 80 J = 1, N
A( JC ) = J
DO 70 I = J + 1, N
A( JC+I-J ) = ZERO
70 CONTINUE
JC = JC + N - J + 1
80 CONTINUE
END IF
*
* Since the trace of a unit triangular matrix is 1, the product
* of its singular values must be 1. Let s = sqrt(CNDNUM),
* x = sqrt(s) - 1/sqrt(s), y = sqrt(2/(n-2))*x, and z = x**2.
* The following triangular matrix has singular values s, 1, 1,
* ..., 1, 1/s:
*
* 1 y y y ... y y z
* 1 0 0 ... 0 0 y
* 1 0 ... 0 0 y
* . ... . . .
* . . . .
* 1 0 y
* 1 y
* 1
*
* To fill in the zeros, we first multiply by a matrix with small
* condition number of the form
*
* 1 0 0 0 0 ...
* 1 + * 0 0 ...
* 1 + 0 0 0
* 1 + * 0 0
* 1 + 0 0
* ...
* 1 + 0
* 1 0
* 1
*
* Each element marked with a '*' is formed by taking the product
* of the adjacent elements marked with '+'. The '*'s can be
* chosen freely, and the '+'s are chosen so that the inverse of
* T will have elements of the same magnitude as T. If the *'s in
* both T and inv(T) have small magnitude, T is well conditioned.
* The two offdiagonals of T are stored in WORK.
*
* The product of these two matrices has the form
*
* 1 y y y y y . y y z
* 1 + * 0 0 . 0 0 y
* 1 + 0 0 . 0 0 y
* 1 + * . . . .
* 1 + . . . .
* . . . . .
* . . . .
* 1 + y
* 1 y
* 1
*
* Now we multiply by Givens rotations, using the fact that
*
* [ c s ] [ 1 w ] [ -c -s ] = [ 1 -w ]
* [ -s c ] [ 0 1 ] [ s -c ] [ 0 1 ]
* and
* [ -c -s ] [ 1 0 ] [ c s ] = [ 1 0 ]
* [ s -c ] [ w 1 ] [ -s c ] [ -w 1 ]
*
* where c = w / sqrt(w**2+4) and s = 2 / sqrt(w**2+4).
*
STAR1 = 0.25D0
SFAC = 0.5D0
PLUS1 = SFAC
DO 90 J = 1, N, 2
PLUS2 = STAR1 / PLUS1
WORK( J ) = PLUS1
WORK( N+J ) = STAR1
IF( J+1.LE.N ) THEN
WORK( J+1 ) = PLUS2
WORK( N+J+1 ) = ZERO
PLUS1 = STAR1 / PLUS2
REXP = DLARND( 2, ISEED )
STAR1 = STAR1*( SFAC**REXP )
IF( REXP.LT.ZERO ) THEN
STAR1 = -SFAC**( ONE-REXP )
ELSE
STAR1 = SFAC**( ONE+REXP )
END IF
END IF
90 CONTINUE
*
X = SQRT( CNDNUM ) - ONE / SQRT( CNDNUM )
IF( N.GT.2 ) THEN
Y = SQRT( TWO / DBLE( N-2 ) )*X
ELSE
Y = ZERO
END IF
Z = X*X
*
IF( UPPER ) THEN
*
* Set the upper triangle of A with a unit triangular matrix
* of known condition number.
*
JC = 1
DO 100 J = 2, N
A( JC+1 ) = Y
IF( J.GT.2 )
$ A( JC+J-1 ) = WORK( J-2 )
IF( J.GT.3 )
$ A( JC+J-2 ) = WORK( N+J-3 )
JC = JC + J
100 CONTINUE
JC = JC - N
A( JC+1 ) = Z
DO 110 J = 2, N - 1
A( JC+J ) = Y
110 CONTINUE
ELSE
*
* Set the lower triangle of A with a unit triangular matrix
* of known condition number.
*
DO 120 I = 2, N - 1
A( I ) = Y
120 CONTINUE
A( N ) = Z
JC = N + 1
DO 130 J = 2, N - 1
A( JC+1 ) = WORK( J-1 )
IF( J.LT.N-1 )
$ A( JC+2 ) = WORK( N+J-1 )
A( JC+N-J ) = Y
JC = JC + N - J + 1
130 CONTINUE
END IF
*
* Fill in the zeros using Givens rotations
*
IF( UPPER ) THEN
JC = 1
DO 150 J = 1, N - 1
JCNEXT = JC + J
RA = A( JCNEXT+J-1 )
RB = TWO
CALL DROTG( RA, RB, C, S )
*
* Multiply by [ c s; -s c] on the left.
*
IF( N.GT.J+1 ) THEN
JX = JCNEXT + J
DO 140 I = J + 2, N
STEMP = C*A( JX+J ) + S*A( JX+J+1 )
A( JX+J+1 ) = -S*A( JX+J ) + C*A( JX+J+1 )
A( JX+J ) = STEMP
JX = JX + I
140 CONTINUE
END IF
*
* Multiply by [-c -s; s -c] on the right.
*
IF( J.GT.1 )
$ CALL DROT( J-1, A( JCNEXT ), 1, A( JC ), 1, -C, -S )
*
* Negate A(J,J+1).
*
A( JCNEXT+J-1 ) = -A( JCNEXT+J-1 )
JC = JCNEXT
150 CONTINUE
ELSE
JC = 1
DO 170 J = 1, N - 1
JCNEXT = JC + N - J + 1
RA = A( JC+1 )
RB = TWO
CALL DROTG( RA, RB, C, S )
*
* Multiply by [ c -s; s c] on the right.
*
IF( N.GT.J+1 )
$ CALL DROT( N-J-1, A( JCNEXT+1 ), 1, A( JC+2 ), 1, C,
$ -S )
*
* Multiply by [-c s; -s -c] on the left.
*
IF( J.GT.1 ) THEN
JX = 1
DO 160 I = 1, J - 1
STEMP = -C*A( JX+J-I ) + S*A( JX+J-I+1 )
A( JX+J-I+1 ) = -S*A( JX+J-I ) - C*A( JX+J-I+1 )
A( JX+J-I ) = STEMP
JX = JX + N - I + 1
160 CONTINUE
END IF
*
* Negate A(J+1,J).
*
A( JC+1 ) = -A( JC+1 )
JC = JCNEXT
170 CONTINUE
END IF
*
* IMAT > 10: Pathological test cases. These triangular matrices
* are badly scaled or badly conditioned, so when used in solving a
* triangular system they may cause overflow in the solution vector.
*
ELSE IF( IMAT.EQ.11 ) THEN
*
* Type 11: Generate a triangular matrix with elements between
* -1 and 1. Give the diagonal norm 2 to make it well-conditioned.
* Make the right hand side large so that it requires scaling.
*
IF( UPPER ) THEN
JC = 1
DO 180 J = 1, N
CALL DLARNV( 2, ISEED, J, A( JC ) )
A( JC+J-1 ) = SIGN( TWO, A( JC+J-1 ) )
JC = JC + J
180 CONTINUE
ELSE
JC = 1
DO 190 J = 1, N
CALL DLARNV( 2, ISEED, N-J+1, A( JC ) )
A( JC ) = SIGN( TWO, A( JC ) )
JC = JC + N - J + 1
190 CONTINUE
END IF
*
* Set the right hand side so that the largest value is BIGNUM.
*
CALL DLARNV( 2, ISEED, N, B )
IY = IDAMAX( N, B, 1 )
BNORM = ABS( B( IY ) )
BSCAL = BIGNUM / MAX( ONE, BNORM )
CALL DSCAL( N, BSCAL, B, 1 )
*
ELSE IF( IMAT.EQ.12 ) THEN
*
* Type 12: Make the first diagonal element in the solve small to
* cause immediate overflow when dividing by T(j,j).
* In type 12, the offdiagonal elements are small (CNORM(j) < 1).
*
CALL DLARNV( 2, ISEED, N, B )
TSCAL = ONE / MAX( ONE, DBLE( N-1 ) )
IF( UPPER ) THEN
JC = 1
DO 200 J = 1, N
CALL DLARNV( 2, ISEED, J-1, A( JC ) )
CALL DSCAL( J-1, TSCAL, A( JC ), 1 )
A( JC+J-1 ) = SIGN( ONE, DLARND( 2, ISEED ) )
JC = JC + J
200 CONTINUE
A( N*( N+1 ) / 2 ) = SMLNUM
ELSE
JC = 1
DO 210 J = 1, N
CALL DLARNV( 2, ISEED, N-J, A( JC+1 ) )
CALL DSCAL( N-J, TSCAL, A( JC+1 ), 1 )
A( JC ) = SIGN( ONE, DLARND( 2, ISEED ) )
JC = JC + N - J + 1
210 CONTINUE
A( 1 ) = SMLNUM
END IF
*
ELSE IF( IMAT.EQ.13 ) THEN
*
* Type 13: Make the first diagonal element in the solve small to
* cause immediate overflow when dividing by T(j,j).
* In type 13, the offdiagonal elements are O(1) (CNORM(j) > 1).
*
CALL DLARNV( 2, ISEED, N, B )
IF( UPPER ) THEN
JC = 1
DO 220 J = 1, N
CALL DLARNV( 2, ISEED, J-1, A( JC ) )
A( JC+J-1 ) = SIGN( ONE, DLARND( 2, ISEED ) )
JC = JC + J
220 CONTINUE
A( N*( N+1 ) / 2 ) = SMLNUM
ELSE
JC = 1
DO 230 J = 1, N
CALL DLARNV( 2, ISEED, N-J, A( JC+1 ) )
A( JC ) = SIGN( ONE, DLARND( 2, ISEED ) )
JC = JC + N - J + 1
230 CONTINUE
A( 1 ) = SMLNUM
END IF
*
ELSE IF( IMAT.EQ.14 ) THEN
*
* Type 14: T is diagonal with small numbers on the diagonal to
* make the growth factor underflow, but a small right hand side
* chosen so that the solution does not overflow.
*
IF( UPPER ) THEN
JCOUNT = 1
JC = ( N-1 )*N / 2 + 1
DO 250 J = N, 1, -1
DO 240 I = 1, J - 1
A( JC+I-1 ) = ZERO
240 CONTINUE
IF( JCOUNT.LE.2 ) THEN
A( JC+J-1 ) = SMLNUM
ELSE
A( JC+J-1 ) = ONE
END IF
JCOUNT = JCOUNT + 1
IF( JCOUNT.GT.4 )
$ JCOUNT = 1
JC = JC - J + 1
250 CONTINUE
ELSE
JCOUNT = 1
JC = 1
DO 270 J = 1, N
DO 260 I = J + 1, N
A( JC+I-J ) = ZERO
260 CONTINUE
IF( JCOUNT.LE.2 ) THEN
A( JC ) = SMLNUM
ELSE
A( JC ) = ONE
END IF
JCOUNT = JCOUNT + 1
IF( JCOUNT.GT.4 )
$ JCOUNT = 1
JC = JC + N - J + 1
270 CONTINUE
END IF
*
* Set the right hand side alternately zero and small.
*
IF( UPPER ) THEN
B( 1 ) = ZERO
DO 280 I = N, 2, -2
B( I ) = ZERO
B( I-1 ) = SMLNUM
280 CONTINUE
ELSE
B( N ) = ZERO
DO 290 I = 1, N - 1, 2
B( I ) = ZERO
B( I+1 ) = SMLNUM
290 CONTINUE
END IF
*
ELSE IF( IMAT.EQ.15 ) THEN
*
* Type 15: Make the diagonal elements small to cause gradual
* overflow when dividing by T(j,j). To control the amount of
* scaling needed, the matrix is bidiagonal.
*
TEXP = ONE / MAX( ONE, DBLE( N-1 ) )
TSCAL = SMLNUM**TEXP
CALL DLARNV( 2, ISEED, N, B )
IF( UPPER ) THEN
JC = 1
DO 310 J = 1, N
DO 300 I = 1, J - 2
A( JC+I-1 ) = ZERO
300 CONTINUE
IF( J.GT.1 )
$ A( JC+J-2 ) = -ONE
A( JC+J-1 ) = TSCAL
JC = JC + J
310 CONTINUE
B( N ) = ONE
ELSE
JC = 1
DO 330 J = 1, N
DO 320 I = J + 2, N
A( JC+I-J ) = ZERO
320 CONTINUE
IF( J.LT.N )
$ A( JC+1 ) = -ONE
A( JC ) = TSCAL
JC = JC + N - J + 1
330 CONTINUE
B( 1 ) = ONE
END IF
*
ELSE IF( IMAT.EQ.16 ) THEN
*
* Type 16: One zero diagonal element.
*
IY = N / 2 + 1
IF( UPPER ) THEN
JC = 1
DO 340 J = 1, N
CALL DLARNV( 2, ISEED, J, A( JC ) )
IF( J.NE.IY ) THEN
A( JC+J-1 ) = SIGN( TWO, A( JC+J-1 ) )
ELSE
A( JC+J-1 ) = ZERO
END IF
JC = JC + J
340 CONTINUE
ELSE
JC = 1
DO 350 J = 1, N
CALL DLARNV( 2, ISEED, N-J+1, A( JC ) )
IF( J.NE.IY ) THEN
A( JC ) = SIGN( TWO, A( JC ) )
ELSE
A( JC ) = ZERO
END IF
JC = JC + N - J + 1
350 CONTINUE
END IF
CALL DLARNV( 2, ISEED, N, B )
CALL DSCAL( N, TWO, B, 1 )
*
ELSE IF( IMAT.EQ.17 ) THEN
*
* Type 17: Make the offdiagonal elements large to cause overflow
* when adding a column of T. In the non-transposed case, the
* matrix is constructed to cause overflow when adding a column in
* every other step.
*
TSCAL = UNFL / ULP
TSCAL = ( ONE-ULP ) / TSCAL
DO 360 J = 1, N*( N+1 ) / 2
A( J ) = ZERO
360 CONTINUE
TEXP = ONE
IF( UPPER ) THEN
JC = ( N-1 )*N / 2 + 1
DO 370 J = N, 2, -2
A( JC ) = -TSCAL / DBLE( N+1 )
A( JC+J-1 ) = ONE
B( J ) = TEXP*( ONE-ULP )
JC = JC - J + 1
A( JC ) = -( TSCAL / DBLE( N+1 ) ) / DBLE( N+2 )
A( JC+J-2 ) = ONE
B( J-1 ) = TEXP*DBLE( N*N+N-1 )
TEXP = TEXP*TWO
JC = JC - J + 2
370 CONTINUE
B( 1 ) = ( DBLE( N+1 ) / DBLE( N+2 ) )*TSCAL
ELSE
JC = 1
DO 380 J = 1, N - 1, 2
A( JC+N-J ) = -TSCAL / DBLE( N+1 )
A( JC ) = ONE
B( J ) = TEXP*( ONE-ULP )
JC = JC + N - J + 1
A( JC+N-J-1 ) = -( TSCAL / DBLE( N+1 ) ) / DBLE( N+2 )
A( JC ) = ONE
B( J+1 ) = TEXP*DBLE( N*N+N-1 )
TEXP = TEXP*TWO
JC = JC + N - J
380 CONTINUE
B( N ) = ( DBLE( N+1 ) / DBLE( N+2 ) )*TSCAL
END IF
*
ELSE IF( IMAT.EQ.18 ) THEN
*
* Type 18: Generate a unit triangular matrix with elements
* between -1 and 1, and make the right hand side large so that it
* requires scaling.
*
IF( UPPER ) THEN
JC = 1
DO 390 J = 1, N
CALL DLARNV( 2, ISEED, J-1, A( JC ) )
A( JC+J-1 ) = ZERO
JC = JC + J
390 CONTINUE
ELSE
JC = 1
DO 400 J = 1, N
IF( J.LT.N )
$ CALL DLARNV( 2, ISEED, N-J, A( JC+1 ) )
A( JC ) = ZERO
JC = JC + N - J + 1
400 CONTINUE
END IF
*
* Set the right hand side so that the largest value is BIGNUM.
*
CALL DLARNV( 2, ISEED, N, B )
IY = IDAMAX( N, B, 1 )
BNORM = ABS( B( IY ) )
BSCAL = BIGNUM / MAX( ONE, BNORM )
CALL DSCAL( N, BSCAL, B, 1 )
*
ELSE IF( IMAT.EQ.19 ) THEN
*
* Type 19: Generate a triangular matrix with elements between
* BIGNUM/(n-1) and BIGNUM so that at least one of the column
* norms will exceed BIGNUM.
*
TLEFT = BIGNUM / MAX( ONE, DBLE( N-1 ) )
TSCAL = BIGNUM*( DBLE( N-1 ) / MAX( ONE, DBLE( N ) ) )
IF( UPPER ) THEN
JC = 1
DO 420 J = 1, N
CALL DLARNV( 2, ISEED, J, A( JC ) )
DO 410 I = 1, J
A( JC+I-1 ) = SIGN( TLEFT, A( JC+I-1 ) ) +
$ TSCAL*A( JC+I-1 )
410 CONTINUE
JC = JC + J
420 CONTINUE
ELSE
JC = 1
DO 440 J = 1, N
CALL DLARNV( 2, ISEED, N-J+1, A( JC ) )
DO 430 I = J, N
A( JC+I-J ) = SIGN( TLEFT, A( JC+I-J ) ) +
$ TSCAL*A( JC+I-J )
430 CONTINUE
JC = JC + N - J + 1
440 CONTINUE
END IF
CALL DLARNV( 2, ISEED, N, B )
CALL DSCAL( N, TWO, B, 1 )
END IF
*
* Flip the matrix across its counter-diagonal if the transpose will
* be used.
*
IF( .NOT.LSAME( TRANS, 'N' ) ) THEN
IF( UPPER ) THEN
JJ = 1
JR = N*( N+1 ) / 2
DO 460 J = 1, N / 2
JL = JJ
DO 450 I = J, N - J
T = A( JR-I+J )
A( JR-I+J ) = A( JL )
A( JL ) = T
JL = JL + I
450 CONTINUE
JJ = JJ + J + 1
JR = JR - ( N-J+1 )
460 CONTINUE
ELSE
JL = 1
JJ = N*( N+1 ) / 2
DO 480 J = 1, N / 2
JR = JJ
DO 470 I = J, N - J
T = A( JL+I-J )
A( JL+I-J ) = A( JR )
A( JR ) = T
JR = JR - I
470 CONTINUE
JL = JL + N - J + 1
JJ = JJ - J - 1
480 CONTINUE
END IF
END IF
*
RETURN
*
* End of DLATTP
*
END