SUBROUTINE CLATSY( UPLO, N, X, LDX, ISEED )
*
*  -- LAPACK auxiliary test routine (version 3.1) --
*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
*     November 2006
*
*     .. Scalar Arguments ..
      CHARACTER          UPLO
      INTEGER            LDX, N
*     ..
*     .. Array Arguments ..
      INTEGER            ISEED( * )
      COMPLEX            X( LDX, * )
*     ..
*
*  Purpose
*  =======
*
*  CLATSY generates a special test matrix for the complex symmetric
*  (indefinite) factorization.  The pivot blocks of the generated matrix
*  will be in the following order:
*     2x2 pivot block, non diagonalizable
*     1x1 pivot block
*     2x2 pivot block, diagonalizable
*     (cycle repeats)
*  A row interchange is required for each non-diagonalizable 2x2 block.
*
*  Arguments
*  =========
*
*  UPLO    (input) CHARACTER
*          Specifies whether the generated matrix is to be upper or
*          lower triangular.
*          = 'U':  Upper triangular
*          = 'L':  Lower triangular
*
*  N       (input) INTEGER
*          The dimension of the matrix to be generated.
*
*  X       (output) COMPLEX array, dimension (LDX,N)
*          The generated matrix, consisting of 3x3 and 2x2 diagonal
*          blocks which result in the pivot sequence given above.
*          The matrix outside of these diagonal blocks is zero.
*
*  LDX     (input) INTEGER
*          The leading dimension of the array X.
*
*  ISEED   (input/output) INTEGER array, dimension (4)
*          On entry, the seed for the random number generator.  The last
*          of the four integers must be odd.  (modified on exit)
*
*  =====================================================================
*
*     .. Parameters ..
      COMPLEX            EYE
      PARAMETER          ( EYE = ( 0.0, 1.0 ) )
*     ..
*     .. Local Scalars ..
      INTEGER            I, J, N5
      REAL               ALPHA, ALPHA3, BETA
      COMPLEX            A, B, C, R
*     ..
*     .. External Functions ..
      COMPLEX            CLARND
      EXTERNAL           CLARND
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, SQRT
*     ..
*     .. Executable Statements ..
*
*     Initialize constants
*
      ALPHA = ( 1.+SQRT( 17. ) ) / 8.
      BETA = ALPHA - 1. / 1000.
      ALPHA3 = ALPHA*ALPHA*ALPHA
*
*     UPLO = 'U':  Upper triangular storage
*
      IF( UPLO.EQ.'U' ) THEN
*
*        Fill the upper triangle of the matrix with zeros.
*
         DO 20 J = 1, N
            DO 10 I = 1, J
               X( I, J ) = 0.0
   10       CONTINUE
   20    CONTINUE
         N5 = N / 5
         N5 = N - 5*N5 + 1
*
         DO 30 I = N, N5, -5
            A = ALPHA3*CLARND( 5, ISEED )
            B = CLARND( 5, ISEED ) / ALPHA
            C = A - 2.*B*EYE
            R = C / BETA
            X( I, I ) = A
            X( I-2, I ) = B
            X( I-2, I-1 ) = R
            X( I-2, I-2 ) = C
            X( I-1, I-1 ) = CLARND( 2, ISEED )
            X( I-3, I-3 ) = CLARND( 2, ISEED )
            X( I-4, I-4 ) = CLARND( 2, ISEED )
            IF( ABS( X( I-3, I-3 ) ).GT.ABS( X( I-4, I-4 ) ) ) THEN
               X( I-4, I-3 ) = 2.0*X( I-3, I-3 )
            ELSE
               X( I-4, I-3 ) = 2.0*X( I-4, I-4 )
            END IF
   30    CONTINUE
*
*        Clean-up for N not a multiple of 5.
*
         I = N5 - 1
         IF( I.GT.2 ) THEN
            A = ALPHA3*CLARND( 5, ISEED )
            B = CLARND( 5, ISEED ) / ALPHA
            C = A - 2.*B*EYE
            R = C / BETA
            X( I, I ) = A
            X( I-2, I ) = B
            X( I-2, I-1 ) = R
            X( I-2, I-2 ) = C
            X( I-1, I-1 ) = CLARND( 2, ISEED )
            I = I - 3
         END IF
         IF( I.GT.1 ) THEN
            X( I, I ) = CLARND( 2, ISEED )
            X( I-1, I-1 ) = CLARND( 2, ISEED )
            IF( ABS( X( I, I ) ).GT.ABS( X( I-1, I-1 ) ) ) THEN
               X( I-1, I ) = 2.0*X( I, I )
            ELSE
               X( I-1, I ) = 2.0*X( I-1, I-1 )
            END IF
            I = I - 2
         ELSE IF( I.EQ.1 ) THEN
            X( I, I ) = CLARND( 2, ISEED )
            I = I - 1
         END IF
*
*     UPLO = 'L':  Lower triangular storage
*
      ELSE
*
*        Fill the lower triangle of the matrix with zeros.
*
         DO 50 J = 1, N
            DO 40 I = J, N
               X( I, J ) = 0.0
   40       CONTINUE
   50    CONTINUE
         N5 = N / 5
         N5 = N5*5
*
         DO 60 I = 1, N5, 5
            A = ALPHA3*CLARND( 5, ISEED )
            B = CLARND( 5, ISEED ) / ALPHA
            C = A - 2.*B*EYE
            R = C / BETA
            X( I, I ) = A
            X( I+2, I ) = B
            X( I+2, I+1 ) = R
            X( I+2, I+2 ) = C
            X( I+1, I+1 ) = CLARND( 2, ISEED )
            X( I+3, I+3 ) = CLARND( 2, ISEED )
            X( I+4, I+4 ) = CLARND( 2, ISEED )
            IF( ABS( X( I+3, I+3 ) ).GT.ABS( X( I+4, I+4 ) ) ) THEN
               X( I+4, I+3 ) = 2.0*X( I+3, I+3 )
            ELSE
               X( I+4, I+3 ) = 2.0*X( I+4, I+4 )
            END IF
   60    CONTINUE
*
*        Clean-up for N not a multiple of 5.
*
         I = N5 + 1
         IF( I.LT.N-1 ) THEN
            A = ALPHA3*CLARND( 5, ISEED )
            B = CLARND( 5, ISEED ) / ALPHA
            C = A - 2.*B*EYE
            R = C / BETA
            X( I, I ) = A
            X( I+2, I ) = B
            X( I+2, I+1 ) = R
            X( I+2, I+2 ) = C
            X( I+1, I+1 ) = CLARND( 2, ISEED )
            I = I + 3
         END IF
         IF( I.LT.N ) THEN
            X( I, I ) = CLARND( 2, ISEED )
            X( I+1, I+1 ) = CLARND( 2, ISEED )
            IF( ABS( X( I, I ) ).GT.ABS( X( I+1, I+1 ) ) ) THEN
               X( I+1, I ) = 2.0*X( I, I )
            ELSE
               X( I+1, I ) = 2.0*X( I+1, I+1 )
            END IF
            I = I + 2
         ELSE IF( I.EQ.N ) THEN
            X( I, I ) = CLARND( 2, ISEED )
            I = I + 1
         END IF
      END IF
*
      RETURN
*
*     End of CLATSY
*
      END