SUBROUTINE ZLATPS( UPLO, TRANS, DIAG, NORMIN, N, AP, X, SCALE,
$ CNORM, INFO )
*
* -- LAPACK auxiliary routine (version 3.2) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2006
*
* .. Scalar Arguments ..
CHARACTER DIAG, NORMIN, TRANS, UPLO
INTEGER INFO, N
DOUBLE PRECISION SCALE
* ..
* .. Array Arguments ..
DOUBLE PRECISION CNORM( * )
COMPLEX*16 AP( * ), X( * )
* ..
*
* Purpose
* =======
*
* ZLATPS solves one of the triangular systems
*
* A * x = s*b, A**T * x = s*b, or A**H * x = s*b,
*
* with scaling to prevent overflow, where A is an upper or lower
* triangular matrix stored in packed form. Here A**T denotes the
* transpose of A, A**H denotes the conjugate transpose of A, x and b
* are n-element vectors, and s is a scaling factor, usually less than
* or equal to 1, chosen so that the components of x will be less than
* the overflow threshold. If the unscaled problem will not cause
* overflow, the Level 2 BLAS routine ZTPSV is called. If the matrix A
* is singular (A(j,j) = 0 for some j), then s is set to 0 and a
* non-trivial solution to A*x = 0 is returned.
*
* Arguments
* =========
*
* UPLO (input) CHARACTER*1
* Specifies whether the matrix A is upper or lower triangular.
* = 'U': Upper triangular
* = 'L': Lower triangular
*
* TRANS (input) CHARACTER*1
* Specifies the operation applied to A.
* = 'N': Solve A * x = s*b (No transpose)
* = 'T': Solve A**T * x = s*b (Transpose)
* = 'C': Solve A**H * x = s*b (Conjugate transpose)
*
* DIAG (input) CHARACTER*1
* Specifies whether or not the matrix A is unit triangular.
* = 'N': Non-unit triangular
* = 'U': Unit triangular
*
* NORMIN (input) CHARACTER*1
* Specifies whether CNORM has been set or not.
* = 'Y': CNORM contains the column norms on entry
* = 'N': CNORM is not set on entry. On exit, the norms will
* be computed and stored in CNORM.
*
* N (input) INTEGER
* The order of the matrix A. N >= 0.
*
* AP (input) COMPLEX*16 array, dimension (N*(N+1)/2)
* The upper or lower triangular matrix A, packed columnwise in
* a linear array. The j-th column of A is stored in the array
* AP as follows:
* if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
* if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
*
* X (input/output) COMPLEX*16 array, dimension (N)
* On entry, the right hand side b of the triangular system.
* On exit, X is overwritten by the solution vector x.
*
* SCALE (output) DOUBLE PRECISION
* The scaling factor s for the triangular system
* A * x = s*b, A**T * x = s*b, or A**H * x = s*b.
* If SCALE = 0, the matrix A is singular or badly scaled, and
* the vector x is an exact or approximate solution to A*x = 0.
*
* CNORM (input or output) DOUBLE PRECISION array, dimension (N)
*
* If NORMIN = 'Y', CNORM is an input argument and CNORM(j)
* contains the norm of the off-diagonal part of the j-th column
* of A. If TRANS = 'N', CNORM(j) must be greater than or equal
* to the infinity-norm, and if TRANS = 'T' or 'C', CNORM(j)
* must be greater than or equal to the 1-norm.
*
* If NORMIN = 'N', CNORM is an output argument and CNORM(j)
* returns the 1-norm of the offdiagonal part of the j-th column
* of A.
*
* INFO (output) INTEGER
* = 0: successful exit
* < 0: if INFO = -k, the k-th argument had an illegal value
*
* Further Details
* ======= =======
*
* A rough bound on x is computed; if that is less than overflow, ZTPSV
* is called, otherwise, specific code is used which checks for possible
* overflow or divide-by-zero at every operation.
*
* A columnwise scheme is used for solving A*x = b. The basic algorithm
* if A is lower triangular is
*
* x[1:n] := b[1:n]
* for j = 1, ..., n
* x(j) := x(j) / A(j,j)
* x[j+1:n] := x[j+1:n] - x(j) * A[j+1:n,j]
* end
*
* Define bounds on the components of x after j iterations of the loop:
* M(j) = bound on x[1:j]
* G(j) = bound on x[j+1:n]
* Initially, let M(0) = 0 and G(0) = max{x(i), i=1,...,n}.
*
* Then for iteration j+1 we have
* M(j+1) <= G(j) / | A(j+1,j+1) |
* G(j+1) <= G(j) + M(j+1) * | A[j+2:n,j+1] |
* <= G(j) ( 1 + CNORM(j+1) / | A(j+1,j+1) | )
*
* where CNORM(j+1) is greater than or equal to the infinity-norm of
* column j+1 of A, not counting the diagonal. Hence
*
* G(j) <= G(0) product ( 1 + CNORM(i) / | A(i,i) | )
* 1<=i<=j
* and
*
* |x(j)| <= ( G(0) / |A(j,j)| ) product ( 1 + CNORM(i) / |A(i,i)| )
* 1<=i< j
*
* Since |x(j)| <= M(j), we use the Level 2 BLAS routine ZTPSV if the
* reciprocal of the largest M(j), j=1,..,n, is larger than
* max(underflow, 1/overflow).
*
* The bound on x(j) is also used to determine when a step in the
* columnwise method can be performed without fear of overflow. If
* the computed bound is greater than a large constant, x is scaled to
* prevent overflow, but if the bound overflows, x is set to 0, x(j) to
* 1, and scale to 0, and a non-trivial solution to A*x = 0 is found.
*
* Similarly, a row-wise scheme is used to solve A**T *x = b or
* A**H *x = b. The basic algorithm for A upper triangular is
*
* for j = 1, ..., n
* x(j) := ( b(j) - A[1:j-1,j]' * x[1:j-1] ) / A(j,j)
* end
*
* We simultaneously compute two bounds
* G(j) = bound on ( b(i) - A[1:i-1,i]' * x[1:i-1] ), 1<=i<=j
* M(j) = bound on x(i), 1<=i<=j
*
* The initial values are G(0) = 0, M(0) = max{b(i), i=1,..,n}, and we
* add the constraint G(j) >= G(j-1) and M(j) >= M(j-1) for j >= 1.
* Then the bound on x(j) is
*
* M(j) <= M(j-1) * ( 1 + CNORM(j) ) / | A(j,j) |
*
* <= M(0) * product ( ( 1 + CNORM(i) ) / |A(i,i)| )
* 1<=i<=j
*
* and we can safely call ZTPSV if 1/M(n) and 1/G(n) are both greater
* than max(underflow, 1/overflow).
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ZERO, HALF, ONE, TWO
PARAMETER ( ZERO = 0.0D+0, HALF = 0.5D+0, ONE = 1.0D+0,
$ TWO = 2.0D+0 )
* ..
* .. Local Scalars ..
LOGICAL NOTRAN, NOUNIT, UPPER
INTEGER I, IMAX, IP, J, JFIRST, JINC, JLAST, JLEN
DOUBLE PRECISION BIGNUM, GROW, REC, SMLNUM, TJJ, TMAX, TSCAL,
$ XBND, XJ, XMAX
COMPLEX*16 CSUMJ, TJJS, USCAL, ZDUM
* ..
* .. External Functions ..
LOGICAL LSAME
INTEGER IDAMAX, IZAMAX
DOUBLE PRECISION DLAMCH, DZASUM
COMPLEX*16 ZDOTC, ZDOTU, ZLADIV
EXTERNAL LSAME, IDAMAX, IZAMAX, DLAMCH, DZASUM, ZDOTC,
$ ZDOTU, ZLADIV
* ..
* .. External Subroutines ..
EXTERNAL DSCAL, XERBLA, ZAXPY, ZDSCAL, ZTPSV
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, DBLE, DCMPLX, DCONJG, DIMAG, MAX, MIN
* ..
* .. Statement Functions ..
DOUBLE PRECISION CABS1, CABS2
* ..
* .. Statement Function definitions ..
CABS1( ZDUM ) = ABS( DBLE( ZDUM ) ) + ABS( DIMAG( ZDUM ) )
CABS2( ZDUM ) = ABS( DBLE( ZDUM ) / 2.D0 ) +
$ ABS( DIMAG( ZDUM ) / 2.D0 )
* ..
* .. Executable Statements ..
*
INFO = 0
UPPER = LSAME( UPLO, 'U' )
NOTRAN = LSAME( TRANS, 'N' )
NOUNIT = LSAME( DIAG, 'N' )
*
* Test the input parameters.
*
IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
INFO = -1
ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
$ LSAME( TRANS, 'C' ) ) THEN
INFO = -2
ELSE IF( .NOT.NOUNIT .AND. .NOT.LSAME( DIAG, 'U' ) ) THEN
INFO = -3
ELSE IF( .NOT.LSAME( NORMIN, 'Y' ) .AND. .NOT.
$ LSAME( NORMIN, 'N' ) ) THEN
INFO = -4
ELSE IF( N.LT.0 ) THEN
INFO = -5
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'ZLATPS', -INFO )
RETURN
END IF
*
* Quick return if possible
*
IF( N.EQ.0 )
$ RETURN
*
* Determine machine dependent parameters to control overflow.
*
SMLNUM = DLAMCH( 'Safe minimum' )
BIGNUM = ONE / SMLNUM
CALL DLABAD( SMLNUM, BIGNUM )
SMLNUM = SMLNUM / DLAMCH( 'Precision' )
BIGNUM = ONE / SMLNUM
SCALE = ONE
*
IF( LSAME( NORMIN, 'N' ) ) THEN
*
* Compute the 1-norm of each column, not including the diagonal.
*
IF( UPPER ) THEN
*
* A is upper triangular.
*
IP = 1
DO 10 J = 1, N
CNORM( J ) = DZASUM( J-1, AP( IP ), 1 )
IP = IP + J
10 CONTINUE
ELSE
*
* A is lower triangular.
*
IP = 1
DO 20 J = 1, N - 1
CNORM( J ) = DZASUM( N-J, AP( IP+1 ), 1 )
IP = IP + N - J + 1
20 CONTINUE
CNORM( N ) = ZERO
END IF
END IF
*
* Scale the column norms by TSCAL if the maximum element in CNORM is
* greater than BIGNUM/2.
*
IMAX = IDAMAX( N, CNORM, 1 )
TMAX = CNORM( IMAX )
IF( TMAX.LE.BIGNUM*HALF ) THEN
TSCAL = ONE
ELSE
TSCAL = HALF / ( SMLNUM*TMAX )
CALL DSCAL( N, TSCAL, CNORM, 1 )
END IF
*
* Compute a bound on the computed solution vector to see if the
* Level 2 BLAS routine ZTPSV can be used.
*
XMAX = ZERO
DO 30 J = 1, N
XMAX = MAX( XMAX, CABS2( X( J ) ) )
30 CONTINUE
XBND = XMAX
IF( NOTRAN ) THEN
*
* Compute the growth in A * x = b.
*
IF( UPPER ) THEN
JFIRST = N
JLAST = 1
JINC = -1
ELSE
JFIRST = 1
JLAST = N
JINC = 1
END IF
*
IF( TSCAL.NE.ONE ) THEN
GROW = ZERO
GO TO 60
END IF
*
IF( NOUNIT ) THEN
*
* A is non-unit triangular.
*
* Compute GROW = 1/G(j) and XBND = 1/M(j).
* Initially, G(0) = max{x(i), i=1,...,n}.
*
GROW = HALF / MAX( XBND, SMLNUM )
XBND = GROW
IP = JFIRST*( JFIRST+1 ) / 2
JLEN = N
DO 40 J = JFIRST, JLAST, JINC
*
* Exit the loop if the growth factor is too small.
*
IF( GROW.LE.SMLNUM )
$ GO TO 60
*
TJJS = AP( IP )
TJJ = CABS1( TJJS )
*
IF( TJJ.GE.SMLNUM ) THEN
*
* M(j) = G(j-1) / abs(A(j,j))
*
XBND = MIN( XBND, MIN( ONE, TJJ )*GROW )
ELSE
*
* M(j) could overflow, set XBND to 0.
*
XBND = ZERO
END IF
*
IF( TJJ+CNORM( J ).GE.SMLNUM ) THEN
*
* G(j) = G(j-1)*( 1 + CNORM(j) / abs(A(j,j)) )
*
GROW = GROW*( TJJ / ( TJJ+CNORM( J ) ) )
ELSE
*
* G(j) could overflow, set GROW to 0.
*
GROW = ZERO
END IF
IP = IP + JINC*JLEN
JLEN = JLEN - 1
40 CONTINUE
GROW = XBND
ELSE
*
* A is unit triangular.
*
* Compute GROW = 1/G(j), where G(0) = max{x(i), i=1,...,n}.
*
GROW = MIN( ONE, HALF / MAX( XBND, SMLNUM ) )
DO 50 J = JFIRST, JLAST, JINC
*
* Exit the loop if the growth factor is too small.
*
IF( GROW.LE.SMLNUM )
$ GO TO 60
*
* G(j) = G(j-1)*( 1 + CNORM(j) )
*
GROW = GROW*( ONE / ( ONE+CNORM( J ) ) )
50 CONTINUE
END IF
60 CONTINUE
*
ELSE
*
* Compute the growth in A**T * x = b or A**H * x = b.
*
IF( UPPER ) THEN
JFIRST = 1
JLAST = N
JINC = 1
ELSE
JFIRST = N
JLAST = 1
JINC = -1
END IF
*
IF( TSCAL.NE.ONE ) THEN
GROW = ZERO
GO TO 90
END IF
*
IF( NOUNIT ) THEN
*
* A is non-unit triangular.
*
* Compute GROW = 1/G(j) and XBND = 1/M(j).
* Initially, M(0) = max{x(i), i=1,...,n}.
*
GROW = HALF / MAX( XBND, SMLNUM )
XBND = GROW
IP = JFIRST*( JFIRST+1 ) / 2
JLEN = 1
DO 70 J = JFIRST, JLAST, JINC
*
* Exit the loop if the growth factor is too small.
*
IF( GROW.LE.SMLNUM )
$ GO TO 90
*
* G(j) = max( G(j-1), M(j-1)*( 1 + CNORM(j) ) )
*
XJ = ONE + CNORM( J )
GROW = MIN( GROW, XBND / XJ )
*
TJJS = AP( IP )
TJJ = CABS1( TJJS )
*
IF( TJJ.GE.SMLNUM ) THEN
*
* M(j) = M(j-1)*( 1 + CNORM(j) ) / abs(A(j,j))
*
IF( XJ.GT.TJJ )
$ XBND = XBND*( TJJ / XJ )
ELSE
*
* M(j) could overflow, set XBND to 0.
*
XBND = ZERO
END IF
JLEN = JLEN + 1
IP = IP + JINC*JLEN
70 CONTINUE
GROW = MIN( GROW, XBND )
ELSE
*
* A is unit triangular.
*
* Compute GROW = 1/G(j), where G(0) = max{x(i), i=1,...,n}.
*
GROW = MIN( ONE, HALF / MAX( XBND, SMLNUM ) )
DO 80 J = JFIRST, JLAST, JINC
*
* Exit the loop if the growth factor is too small.
*
IF( GROW.LE.SMLNUM )
$ GO TO 90
*
* G(j) = ( 1 + CNORM(j) )*G(j-1)
*
XJ = ONE + CNORM( J )
GROW = GROW / XJ
80 CONTINUE
END IF
90 CONTINUE
END IF
*
IF( ( GROW*TSCAL ).GT.SMLNUM ) THEN
*
* Use the Level 2 BLAS solve if the reciprocal of the bound on
* elements of X is not too small.
*
CALL ZTPSV( UPLO, TRANS, DIAG, N, AP, X, 1 )
ELSE
*
* Use a Level 1 BLAS solve, scaling intermediate results.
*
IF( XMAX.GT.BIGNUM*HALF ) THEN
*
* Scale X so that its components are less than or equal to
* BIGNUM in absolute value.
*
SCALE = ( BIGNUM*HALF ) / XMAX
CALL ZDSCAL( N, SCALE, X, 1 )
XMAX = BIGNUM
ELSE
XMAX = XMAX*TWO
END IF
*
IF( NOTRAN ) THEN
*
* Solve A * x = b
*
IP = JFIRST*( JFIRST+1 ) / 2
DO 120 J = JFIRST, JLAST, JINC
*
* Compute x(j) = b(j) / A(j,j), scaling x if necessary.
*
XJ = CABS1( X( J ) )
IF( NOUNIT ) THEN
TJJS = AP( IP )*TSCAL
ELSE
TJJS = TSCAL
IF( TSCAL.EQ.ONE )
$ GO TO 110
END IF
TJJ = CABS1( TJJS )
IF( TJJ.GT.SMLNUM ) THEN
*
* abs(A(j,j)) > SMLNUM:
*
IF( TJJ.LT.ONE ) THEN
IF( XJ.GT.TJJ*BIGNUM ) THEN
*
* Scale x by 1/b(j).
*
REC = ONE / XJ
CALL ZDSCAL( N, REC, X, 1 )
SCALE = SCALE*REC
XMAX = XMAX*REC
END IF
END IF
X( J ) = ZLADIV( X( J ), TJJS )
XJ = CABS1( X( J ) )
ELSE IF( TJJ.GT.ZERO ) THEN
*
* 0 < abs(A(j,j)) <= SMLNUM:
*
IF( XJ.GT.TJJ*BIGNUM ) THEN
*
* Scale x by (1/abs(x(j)))*abs(A(j,j))*BIGNUM
* to avoid overflow when dividing by A(j,j).
*
REC = ( TJJ*BIGNUM ) / XJ
IF( CNORM( J ).GT.ONE ) THEN
*
* Scale by 1/CNORM(j) to avoid overflow when
* multiplying x(j) times column j.
*
REC = REC / CNORM( J )
END IF
CALL ZDSCAL( N, REC, X, 1 )
SCALE = SCALE*REC
XMAX = XMAX*REC
END IF
X( J ) = ZLADIV( X( J ), TJJS )
XJ = CABS1( X( J ) )
ELSE
*
* A(j,j) = 0: Set x(1:n) = 0, x(j) = 1, and
* scale = 0, and compute a solution to A*x = 0.
*
DO 100 I = 1, N
X( I ) = ZERO
100 CONTINUE
X( J ) = ONE
XJ = ONE
SCALE = ZERO
XMAX = ZERO
END IF
110 CONTINUE
*
* Scale x if necessary to avoid overflow when adding a
* multiple of column j of A.
*
IF( XJ.GT.ONE ) THEN
REC = ONE / XJ
IF( CNORM( J ).GT.( BIGNUM-XMAX )*REC ) THEN
*
* Scale x by 1/(2*abs(x(j))).
*
REC = REC*HALF
CALL ZDSCAL( N, REC, X, 1 )
SCALE = SCALE*REC
END IF
ELSE IF( XJ*CNORM( J ).GT.( BIGNUM-XMAX ) ) THEN
*
* Scale x by 1/2.
*
CALL ZDSCAL( N, HALF, X, 1 )
SCALE = SCALE*HALF
END IF
*
IF( UPPER ) THEN
IF( J.GT.1 ) THEN
*
* Compute the update
* x(1:j-1) := x(1:j-1) - x(j) * A(1:j-1,j)
*
CALL ZAXPY( J-1, -X( J )*TSCAL, AP( IP-J+1 ), 1, X,
$ 1 )
I = IZAMAX( J-1, X, 1 )
XMAX = CABS1( X( I ) )
END IF
IP = IP - J
ELSE
IF( J.LT.N ) THEN
*
* Compute the update
* x(j+1:n) := x(j+1:n) - x(j) * A(j+1:n,j)
*
CALL ZAXPY( N-J, -X( J )*TSCAL, AP( IP+1 ), 1,
$ X( J+1 ), 1 )
I = J + IZAMAX( N-J, X( J+1 ), 1 )
XMAX = CABS1( X( I ) )
END IF
IP = IP + N - J + 1
END IF
120 CONTINUE
*
ELSE IF( LSAME( TRANS, 'T' ) ) THEN
*
* Solve A**T * x = b
*
IP = JFIRST*( JFIRST+1 ) / 2
JLEN = 1
DO 170 J = JFIRST, JLAST, JINC
*
* Compute x(j) = b(j) - sum A(k,j)*x(k).
* k<>j
*
XJ = CABS1( X( J ) )
USCAL = TSCAL
REC = ONE / MAX( XMAX, ONE )
IF( CNORM( J ).GT.( BIGNUM-XJ )*REC ) THEN
*
* If x(j) could overflow, scale x by 1/(2*XMAX).
*
REC = REC*HALF
IF( NOUNIT ) THEN
TJJS = AP( IP )*TSCAL
ELSE
TJJS = TSCAL
END IF
TJJ = CABS1( TJJS )
IF( TJJ.GT.ONE ) THEN
*
* Divide by A(j,j) when scaling x if A(j,j) > 1.
*
REC = MIN( ONE, REC*TJJ )
USCAL = ZLADIV( USCAL, TJJS )
END IF
IF( REC.LT.ONE ) THEN
CALL ZDSCAL( N, REC, X, 1 )
SCALE = SCALE*REC
XMAX = XMAX*REC
END IF
END IF
*
CSUMJ = ZERO
IF( USCAL.EQ.DCMPLX( ONE ) ) THEN
*
* If the scaling needed for A in the dot product is 1,
* call ZDOTU to perform the dot product.
*
IF( UPPER ) THEN
CSUMJ = ZDOTU( J-1, AP( IP-J+1 ), 1, X, 1 )
ELSE IF( J.LT.N ) THEN
CSUMJ = ZDOTU( N-J, AP( IP+1 ), 1, X( J+1 ), 1 )
END IF
ELSE
*
* Otherwise, use in-line code for the dot product.
*
IF( UPPER ) THEN
DO 130 I = 1, J - 1
CSUMJ = CSUMJ + ( AP( IP-J+I )*USCAL )*X( I )
130 CONTINUE
ELSE IF( J.LT.N ) THEN
DO 140 I = 1, N - J
CSUMJ = CSUMJ + ( AP( IP+I )*USCAL )*X( J+I )
140 CONTINUE
END IF
END IF
*
IF( USCAL.EQ.DCMPLX( TSCAL ) ) THEN
*
* Compute x(j) := ( x(j) - CSUMJ ) / A(j,j) if 1/A(j,j)
* was not used to scale the dotproduct.
*
X( J ) = X( J ) - CSUMJ
XJ = CABS1( X( J ) )
IF( NOUNIT ) THEN
*
* Compute x(j) = x(j) / A(j,j), scaling if necessary.
*
TJJS = AP( IP )*TSCAL
ELSE
TJJS = TSCAL
IF( TSCAL.EQ.ONE )
$ GO TO 160
END IF
TJJ = CABS1( TJJS )
IF( TJJ.GT.SMLNUM ) THEN
*
* abs(A(j,j)) > SMLNUM:
*
IF( TJJ.LT.ONE ) THEN
IF( XJ.GT.TJJ*BIGNUM ) THEN
*
* Scale X by 1/abs(x(j)).
*
REC = ONE / XJ
CALL ZDSCAL( N, REC, X, 1 )
SCALE = SCALE*REC
XMAX = XMAX*REC
END IF
END IF
X( J ) = ZLADIV( X( J ), TJJS )
ELSE IF( TJJ.GT.ZERO ) THEN
*
* 0 < abs(A(j,j)) <= SMLNUM:
*
IF( XJ.GT.TJJ*BIGNUM ) THEN
*
* Scale x by (1/abs(x(j)))*abs(A(j,j))*BIGNUM.
*
REC = ( TJJ*BIGNUM ) / XJ
CALL ZDSCAL( N, REC, X, 1 )
SCALE = SCALE*REC
XMAX = XMAX*REC
END IF
X( J ) = ZLADIV( X( J ), TJJS )
ELSE
*
* A(j,j) = 0: Set x(1:n) = 0, x(j) = 1, and
* scale = 0 and compute a solution to A**T *x = 0.
*
DO 150 I = 1, N
X( I ) = ZERO
150 CONTINUE
X( J ) = ONE
SCALE = ZERO
XMAX = ZERO
END IF
160 CONTINUE
ELSE
*
* Compute x(j) := x(j) / A(j,j) - CSUMJ if the dot
* product has already been divided by 1/A(j,j).
*
X( J ) = ZLADIV( X( J ), TJJS ) - CSUMJ
END IF
XMAX = MAX( XMAX, CABS1( X( J ) ) )
JLEN = JLEN + 1
IP = IP + JINC*JLEN
170 CONTINUE
*
ELSE
*
* Solve A**H * x = b
*
IP = JFIRST*( JFIRST+1 ) / 2
JLEN = 1
DO 220 J = JFIRST, JLAST, JINC
*
* Compute x(j) = b(j) - sum A(k,j)*x(k).
* k<>j
*
XJ = CABS1( X( J ) )
USCAL = TSCAL
REC = ONE / MAX( XMAX, ONE )
IF( CNORM( J ).GT.( BIGNUM-XJ )*REC ) THEN
*
* If x(j) could overflow, scale x by 1/(2*XMAX).
*
REC = REC*HALF
IF( NOUNIT ) THEN
TJJS = DCONJG( AP( IP ) )*TSCAL
ELSE
TJJS = TSCAL
END IF
TJJ = CABS1( TJJS )
IF( TJJ.GT.ONE ) THEN
*
* Divide by A(j,j) when scaling x if A(j,j) > 1.
*
REC = MIN( ONE, REC*TJJ )
USCAL = ZLADIV( USCAL, TJJS )
END IF
IF( REC.LT.ONE ) THEN
CALL ZDSCAL( N, REC, X, 1 )
SCALE = SCALE*REC
XMAX = XMAX*REC
END IF
END IF
*
CSUMJ = ZERO
IF( USCAL.EQ.DCMPLX( ONE ) ) THEN
*
* If the scaling needed for A in the dot product is 1,
* call ZDOTC to perform the dot product.
*
IF( UPPER ) THEN
CSUMJ = ZDOTC( J-1, AP( IP-J+1 ), 1, X, 1 )
ELSE IF( J.LT.N ) THEN
CSUMJ = ZDOTC( N-J, AP( IP+1 ), 1, X( J+1 ), 1 )
END IF
ELSE
*
* Otherwise, use in-line code for the dot product.
*
IF( UPPER ) THEN
DO 180 I = 1, J - 1
CSUMJ = CSUMJ + ( DCONJG( AP( IP-J+I ) )*USCAL )
$ *X( I )
180 CONTINUE
ELSE IF( J.LT.N ) THEN
DO 190 I = 1, N - J
CSUMJ = CSUMJ + ( DCONJG( AP( IP+I ) )*USCAL )*
$ X( J+I )
190 CONTINUE
END IF
END IF
*
IF( USCAL.EQ.DCMPLX( TSCAL ) ) THEN
*
* Compute x(j) := ( x(j) - CSUMJ ) / A(j,j) if 1/A(j,j)
* was not used to scale the dotproduct.
*
X( J ) = X( J ) - CSUMJ
XJ = CABS1( X( J ) )
IF( NOUNIT ) THEN
*
* Compute x(j) = x(j) / A(j,j), scaling if necessary.
*
TJJS = DCONJG( AP( IP ) )*TSCAL
ELSE
TJJS = TSCAL
IF( TSCAL.EQ.ONE )
$ GO TO 210
END IF
TJJ = CABS1( TJJS )
IF( TJJ.GT.SMLNUM ) THEN
*
* abs(A(j,j)) > SMLNUM:
*
IF( TJJ.LT.ONE ) THEN
IF( XJ.GT.TJJ*BIGNUM ) THEN
*
* Scale X by 1/abs(x(j)).
*
REC = ONE / XJ
CALL ZDSCAL( N, REC, X, 1 )
SCALE = SCALE*REC
XMAX = XMAX*REC
END IF
END IF
X( J ) = ZLADIV( X( J ), TJJS )
ELSE IF( TJJ.GT.ZERO ) THEN
*
* 0 < abs(A(j,j)) <= SMLNUM:
*
IF( XJ.GT.TJJ*BIGNUM ) THEN
*
* Scale x by (1/abs(x(j)))*abs(A(j,j))*BIGNUM.
*
REC = ( TJJ*BIGNUM ) / XJ
CALL ZDSCAL( N, REC, X, 1 )
SCALE = SCALE*REC
XMAX = XMAX*REC
END IF
X( J ) = ZLADIV( X( J ), TJJS )
ELSE
*
* A(j,j) = 0: Set x(1:n) = 0, x(j) = 1, and
* scale = 0 and compute a solution to A**H *x = 0.
*
DO 200 I = 1, N
X( I ) = ZERO
200 CONTINUE
X( J ) = ONE
SCALE = ZERO
XMAX = ZERO
END IF
210 CONTINUE
ELSE
*
* Compute x(j) := x(j) / A(j,j) - CSUMJ if the dot
* product has already been divided by 1/A(j,j).
*
X( J ) = ZLADIV( X( J ), TJJS ) - CSUMJ
END IF
XMAX = MAX( XMAX, CABS1( X( J ) ) )
JLEN = JLEN + 1
IP = IP + JINC*JLEN
220 CONTINUE
END IF
SCALE = SCALE / TSCAL
END IF
*
* Scale the column norms by 1/TSCAL for return.
*
IF( TSCAL.NE.ONE ) THEN
CALL DSCAL( N, ONE / TSCAL, CNORM, 1 )
END IF
*
RETURN
*
* End of ZLATPS
*
END