SUBROUTINE SGETRS( TRANS, N, NRHS, A, LDA, IPIV, B, LDB, INFO ) * * -- LAPACK routine (version 3.2) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * November 2006 * * .. Scalar Arguments .. CHARACTER TRANS INTEGER INFO, LDA, LDB, N, NRHS * .. * .. Array Arguments .. INTEGER IPIV( * ) REAL A( LDA, * ), B( LDB, * ) * .. * * Purpose * ======= * * SGETRS solves a system of linear equations * A * X = B or A' * X = B * with a general N-by-N matrix A using the LU factorization computed * by SGETRF. * * Arguments * ========= * * TRANS (input) CHARACTER*1 * Specifies the form of the system of equations: * = 'N': A * X = B (No transpose) * = 'T': A'* X = B (Transpose) * = 'C': A'* X = B (Conjugate transpose = Transpose) * * N (input) INTEGER * The order of the matrix A. N >= 0. * * NRHS (input) INTEGER * The number of right hand sides, i.e., the number of columns * of the matrix B. NRHS >= 0. * * A (input) REAL array, dimension (LDA,N) * The factors L and U from the factorization A = P*L*U * as computed by SGETRF. * * LDA (input) INTEGER * The leading dimension of the array A. LDA >= max(1,N). * * IPIV (input) INTEGER array, dimension (N) * The pivot indices from SGETRF; for 1<=i<=N, row i of the * matrix was interchanged with row IPIV(i). * * B (input/output) REAL array, dimension (LDB,NRHS) * On entry, the right hand side matrix B. * On exit, the solution matrix X. * * LDB (input) INTEGER * The leading dimension of the array B. LDB >= max(1,N). * * INFO (output) INTEGER * = 0: successful exit * < 0: if INFO = -i, the i-th argument had an illegal value * * ===================================================================== * * .. Parameters .. REAL ONE PARAMETER ( ONE = 1.0E+0 ) * .. * .. Local Scalars .. LOGICAL NOTRAN * .. * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. External Subroutines .. EXTERNAL SLASWP, STRSM, XERBLA * .. * .. Intrinsic Functions .. INTRINSIC MAX * .. * .. Executable Statements .. * * Test the input parameters. * INFO = 0 NOTRAN = LSAME( TRANS, 'N' ) IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT. \$ LSAME( TRANS, 'C' ) ) THEN INFO = -1 ELSE IF( N.LT.0 ) THEN INFO = -2 ELSE IF( NRHS.LT.0 ) THEN INFO = -3 ELSE IF( LDA.LT.MAX( 1, N ) ) THEN INFO = -5 ELSE IF( LDB.LT.MAX( 1, N ) ) THEN INFO = -8 END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'SGETRS', -INFO ) RETURN END IF * * Quick return if possible * IF( N.EQ.0 .OR. NRHS.EQ.0 ) \$ RETURN * IF( NOTRAN ) THEN * * Solve A * X = B. * * Apply row interchanges to the right hand sides. * CALL SLASWP( NRHS, B, LDB, 1, N, IPIV, 1 ) * * Solve L*X = B, overwriting B with X. * CALL STRSM( 'Left', 'Lower', 'No transpose', 'Unit', N, NRHS, \$ ONE, A, LDA, B, LDB ) * * Solve U*X = B, overwriting B with X. * CALL STRSM( 'Left', 'Upper', 'No transpose', 'Non-unit', N, \$ NRHS, ONE, A, LDA, B, LDB ) ELSE * * Solve A' * X = B. * * Solve U'*X = B, overwriting B with X. * CALL STRSM( 'Left', 'Upper', 'Transpose', 'Non-unit', N, NRHS, \$ ONE, A, LDA, B, LDB ) * * Solve L'*X = B, overwriting B with X. * CALL STRSM( 'Left', 'Lower', 'Transpose', 'Unit', N, NRHS, ONE, \$ A, LDA, B, LDB ) * * Apply row interchanges to the solution vectors. * CALL SLASWP( NRHS, B, LDB, 1, N, IPIV, -1 ) END IF * RETURN * * End of SGETRS * END