SUBROUTINE DGEBD2( M, N, A, LDA, D, E, TAUQ, TAUP, WORK, INFO )
*
* -- LAPACK routine (version 3.2) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2006
*
* .. Scalar Arguments ..
INTEGER INFO, LDA, M, N
* ..
* .. Array Arguments ..
DOUBLE PRECISION A( LDA, * ), D( * ), E( * ), TAUP( * ),
$ TAUQ( * ), WORK( * )
* ..
*
* Purpose
* =======
*
* DGEBD2 reduces a real general m by n matrix A to upper or lower
* bidiagonal form B by an orthogonal transformation: Q' * A * P = B.
*
* If m >= n, B is upper bidiagonal; if m < n, B is lower bidiagonal.
*
* Arguments
* =========
*
* M (input) INTEGER
* The number of rows in the matrix A. M >= 0.
*
* N (input) INTEGER
* The number of columns in the matrix A. N >= 0.
*
* A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
* On entry, the m by n general matrix to be reduced.
* On exit,
* if m >= n, the diagonal and the first superdiagonal are
* overwritten with the upper bidiagonal matrix B; the
* elements below the diagonal, with the array TAUQ, represent
* the orthogonal matrix Q as a product of elementary
* reflectors, and the elements above the first superdiagonal,
* with the array TAUP, represent the orthogonal matrix P as
* a product of elementary reflectors;
* if m < n, the diagonal and the first subdiagonal are
* overwritten with the lower bidiagonal matrix B; the
* elements below the first subdiagonal, with the array TAUQ,
* represent the orthogonal matrix Q as a product of
* elementary reflectors, and the elements above the diagonal,
* with the array TAUP, represent the orthogonal matrix P as
* a product of elementary reflectors.
* See Further Details.
*
* LDA (input) INTEGER
* The leading dimension of the array A. LDA >= max(1,M).
*
* D (output) DOUBLE PRECISION array, dimension (min(M,N))
* The diagonal elements of the bidiagonal matrix B:
* D(i) = A(i,i).
*
* E (output) DOUBLE PRECISION array, dimension (min(M,N)-1)
* The off-diagonal elements of the bidiagonal matrix B:
* if m >= n, E(i) = A(i,i+1) for i = 1,2,...,n-1;
* if m < n, E(i) = A(i+1,i) for i = 1,2,...,m-1.
*
* TAUQ (output) DOUBLE PRECISION array dimension (min(M,N))
* The scalar factors of the elementary reflectors which
* represent the orthogonal matrix Q. See Further Details.
*
* TAUP (output) DOUBLE PRECISION array, dimension (min(M,N))
* The scalar factors of the elementary reflectors which
* represent the orthogonal matrix P. See Further Details.
*
* WORK (workspace) DOUBLE PRECISION array, dimension (max(M,N))
*
* INFO (output) INTEGER
* = 0: successful exit.
* < 0: if INFO = -i, the i-th argument had an illegal value.
*
* Further Details
* ===============
*
* The matrices Q and P are represented as products of elementary
* reflectors:
*
* If m >= n,
*
* Q = H(1) H(2) . . . H(n) and P = G(1) G(2) . . . G(n-1)
*
* Each H(i) and G(i) has the form:
*
* H(i) = I - tauq * v * v' and G(i) = I - taup * u * u'
*
* where tauq and taup are real scalars, and v and u are real vectors;
* v(1:i-1) = 0, v(i) = 1, and v(i+1:m) is stored on exit in A(i+1:m,i);
* u(1:i) = 0, u(i+1) = 1, and u(i+2:n) is stored on exit in A(i,i+2:n);
* tauq is stored in TAUQ(i) and taup in TAUP(i).
*
* If m < n,
*
* Q = H(1) H(2) . . . H(m-1) and P = G(1) G(2) . . . G(m)
*
* Each H(i) and G(i) has the form:
*
* H(i) = I - tauq * v * v' and G(i) = I - taup * u * u'
*
* where tauq and taup are real scalars, and v and u are real vectors;
* v(1:i) = 0, v(i+1) = 1, and v(i+2:m) is stored on exit in A(i+2:m,i);
* u(1:i-1) = 0, u(i) = 1, and u(i+1:n) is stored on exit in A(i,i+1:n);
* tauq is stored in TAUQ(i) and taup in TAUP(i).
*
* The contents of A on exit are illustrated by the following examples:
*
* m = 6 and n = 5 (m > n): m = 5 and n = 6 (m < n):
*
* ( d e u1 u1 u1 ) ( d u1 u1 u1 u1 u1 )
* ( v1 d e u2 u2 ) ( e d u2 u2 u2 u2 )
* ( v1 v2 d e u3 ) ( v1 e d u3 u3 u3 )
* ( v1 v2 v3 d e ) ( v1 v2 e d u4 u4 )
* ( v1 v2 v3 v4 d ) ( v1 v2 v3 e d u5 )
* ( v1 v2 v3 v4 v5 )
*
* where d and e denote diagonal and off-diagonal elements of B, vi
* denotes an element of the vector defining H(i), and ui an element of
* the vector defining G(i).
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
* ..
* .. Local Scalars ..
INTEGER I
* ..
* .. External Subroutines ..
EXTERNAL DLARF, DLARFG, XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX, MIN
* ..
* .. Executable Statements ..
*
* Test the input parameters
*
INFO = 0
IF( M.LT.0 ) THEN
INFO = -1
ELSE IF( N.LT.0 ) THEN
INFO = -2
ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
INFO = -4
END IF
IF( INFO.LT.0 ) THEN
CALL XERBLA( 'DGEBD2', -INFO )
RETURN
END IF
*
IF( M.GE.N ) THEN
*
* Reduce to upper bidiagonal form
*
DO 10 I = 1, N
*
* Generate elementary reflector H(i) to annihilate A(i+1:m,i)
*
CALL DLARFG( M-I+1, A( I, I ), A( MIN( I+1, M ), I ), 1,
$ TAUQ( I ) )
D( I ) = A( I, I )
A( I, I ) = ONE
*
* Apply H(i) to A(i:m,i+1:n) from the left
*
IF( I.LT.N )
$ CALL DLARF( 'Left', M-I+1, N-I, A( I, I ), 1, TAUQ( I ),
$ A( I, I+1 ), LDA, WORK )
A( I, I ) = D( I )
*
IF( I.LT.N ) THEN
*
* Generate elementary reflector G(i) to annihilate
* A(i,i+2:n)
*
CALL DLARFG( N-I, A( I, I+1 ), A( I, MIN( I+2, N ) ),
$ LDA, TAUP( I ) )
E( I ) = A( I, I+1 )
A( I, I+1 ) = ONE
*
* Apply G(i) to A(i+1:m,i+1:n) from the right
*
CALL DLARF( 'Right', M-I, N-I, A( I, I+1 ), LDA,
$ TAUP( I ), A( I+1, I+1 ), LDA, WORK )
A( I, I+1 ) = E( I )
ELSE
TAUP( I ) = ZERO
END IF
10 CONTINUE
ELSE
*
* Reduce to lower bidiagonal form
*
DO 20 I = 1, M
*
* Generate elementary reflector G(i) to annihilate A(i,i+1:n)
*
CALL DLARFG( N-I+1, A( I, I ), A( I, MIN( I+1, N ) ), LDA,
$ TAUP( I ) )
D( I ) = A( I, I )
A( I, I ) = ONE
*
* Apply G(i) to A(i+1:m,i:n) from the right
*
IF( I.LT.M )
$ CALL DLARF( 'Right', M-I, N-I+1, A( I, I ), LDA,
$ TAUP( I ), A( I+1, I ), LDA, WORK )
A( I, I ) = D( I )
*
IF( I.LT.M ) THEN
*
* Generate elementary reflector H(i) to annihilate
* A(i+2:m,i)
*
CALL DLARFG( M-I, A( I+1, I ), A( MIN( I+2, M ), I ), 1,
$ TAUQ( I ) )
E( I ) = A( I+1, I )
A( I+1, I ) = ONE
*
* Apply H(i) to A(i+1:m,i+1:n) from the left
*
CALL DLARF( 'Left', M-I, N-I, A( I+1, I ), 1, TAUQ( I ),
$ A( I+1, I+1 ), LDA, WORK )
A( I+1, I ) = E( I )
ELSE
TAUQ( I ) = ZERO
END IF
20 CONTINUE
END IF
RETURN
*
* End of DGEBD2
*
END