SUBROUTINE CGGRQF( M, P, N, A, LDA, TAUA, B, LDB, TAUB, WORK, \$ LWORK, INFO ) * * -- LAPACK routine (version 3.2) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * November 2006 * * .. Scalar Arguments .. INTEGER INFO, LDA, LDB, LWORK, M, N, P * .. * .. Array Arguments .. COMPLEX A( LDA, * ), B( LDB, * ), TAUA( * ), TAUB( * ), \$ WORK( * ) * .. * * Purpose * ======= * * CGGRQF computes a generalized RQ factorization of an M-by-N matrix A * and a P-by-N matrix B: * * A = R*Q, B = Z*T*Q, * * where Q is an N-by-N unitary matrix, Z is a P-by-P unitary * matrix, and R and T assume one of the forms: * * if M <= N, R = ( 0 R12 ) M, or if M > N, R = ( R11 ) M-N, * N-M M ( R21 ) N * N * * where R12 or R21 is upper triangular, and * * if P >= N, T = ( T11 ) N , or if P < N, T = ( T11 T12 ) P, * ( 0 ) P-N P N-P * N * * where T11 is upper triangular. * * In particular, if B is square and nonsingular, the GRQ factorization * of A and B implicitly gives the RQ factorization of A*inv(B): * * A*inv(B) = (R*inv(T))*Z' * * where inv(B) denotes the inverse of the matrix B, and Z' denotes the * conjugate transpose of the matrix Z. * * Arguments * ========= * * M (input) INTEGER * The number of rows of the matrix A. M >= 0. * * P (input) INTEGER * The number of rows of the matrix B. P >= 0. * * N (input) INTEGER * The number of columns of the matrices A and B. N >= 0. * * A (input/output) COMPLEX array, dimension (LDA,N) * On entry, the M-by-N matrix A. * On exit, if M <= N, the upper triangle of the subarray * A(1:M,N-M+1:N) contains the M-by-M upper triangular matrix R; * if M > N, the elements on and above the (M-N)-th subdiagonal * contain the M-by-N upper trapezoidal matrix R; the remaining * elements, with the array TAUA, represent the unitary * matrix Q as a product of elementary reflectors (see Further * Details). * * LDA (input) INTEGER * The leading dimension of the array A. LDA >= max(1,M). * * TAUA (output) COMPLEX array, dimension (min(M,N)) * The scalar factors of the elementary reflectors which * represent the unitary matrix Q (see Further Details). * * B (input/output) COMPLEX array, dimension (LDB,N) * On entry, the P-by-N matrix B. * On exit, the elements on and above the diagonal of the array * contain the min(P,N)-by-N upper trapezoidal matrix T (T is * upper triangular if P >= N); the elements below the diagonal, * with the array TAUB, represent the unitary matrix Z as a * product of elementary reflectors (see Further Details). * * LDB (input) INTEGER * The leading dimension of the array B. LDB >= max(1,P). * * TAUB (output) COMPLEX array, dimension (min(P,N)) * The scalar factors of the elementary reflectors which * represent the unitary matrix Z (see Further Details). * * WORK (workspace/output) COMPLEX array, dimension (MAX(1,LWORK)) * On exit, if INFO = 0, WORK(1) returns the optimal LWORK. * * LWORK (input) INTEGER * The dimension of the array WORK. LWORK >= max(1,N,M,P). * For optimum performance LWORK >= max(N,M,P)*max(NB1,NB2,NB3), * where NB1 is the optimal blocksize for the RQ factorization * of an M-by-N matrix, NB2 is the optimal blocksize for the * QR factorization of a P-by-N matrix, and NB3 is the optimal * blocksize for a call of CUNMRQ. * * If LWORK = -1, then a workspace query is assumed; the routine * only calculates the optimal size of the WORK array, returns * this value as the first entry of the WORK array, and no error * message related to LWORK is issued by XERBLA. * * INFO (output) INTEGER * = 0: successful exit * < 0: if INFO=-i, the i-th argument had an illegal value. * * Further Details * =============== * * The matrix Q is represented as a product of elementary reflectors * * Q = H(1) H(2) . . . H(k), where k = min(m,n). * * Each H(i) has the form * * H(i) = I - taua * v * v' * * where taua is a complex scalar, and v is a complex vector with * v(n-k+i+1:n) = 0 and v(n-k+i) = 1; v(1:n-k+i-1) is stored on exit in * A(m-k+i,1:n-k+i-1), and taua in TAUA(i). * To form Q explicitly, use LAPACK subroutine CUNGRQ. * To use Q to update another matrix, use LAPACK subroutine CUNMRQ. * * The matrix Z is represented as a product of elementary reflectors * * Z = H(1) H(2) . . . H(k), where k = min(p,n). * * Each H(i) has the form * * H(i) = I - taub * v * v' * * where taub is a complex scalar, and v is a complex vector with * v(1:i-1) = 0 and v(i) = 1; v(i+1:p) is stored on exit in B(i+1:p,i), * and taub in TAUB(i). * To form Z explicitly, use LAPACK subroutine CUNGQR. * To use Z to update another matrix, use LAPACK subroutine CUNMQR. * * ===================================================================== * * .. Local Scalars .. LOGICAL LQUERY INTEGER LOPT, LWKOPT, NB, NB1, NB2, NB3 * .. * .. External Subroutines .. EXTERNAL CGEQRF, CGERQF, CUNMRQ, XERBLA * .. * .. External Functions .. INTEGER ILAENV EXTERNAL ILAENV * .. * .. Intrinsic Functions .. INTRINSIC INT, MAX, MIN * .. * .. Executable Statements .. * * Test the input parameters * INFO = 0 NB1 = ILAENV( 1, 'CGERQF', ' ', M, N, -1, -1 ) NB2 = ILAENV( 1, 'CGEQRF', ' ', P, N, -1, -1 ) NB3 = ILAENV( 1, 'CUNMRQ', ' ', M, N, P, -1 ) NB = MAX( NB1, NB2, NB3 ) LWKOPT = MAX( N, M, P)*NB WORK( 1 ) = LWKOPT LQUERY = ( LWORK.EQ.-1 ) IF( M.LT.0 ) THEN INFO = -1 ELSE IF( P.LT.0 ) THEN INFO = -2 ELSE IF( N.LT.0 ) THEN INFO = -3 ELSE IF( LDA.LT.MAX( 1, M ) ) THEN INFO = -5 ELSE IF( LDB.LT.MAX( 1, P ) ) THEN INFO = -8 ELSE IF( LWORK.LT.MAX( 1, M, P, N ) .AND. .NOT.LQUERY ) THEN INFO = -11 END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'CGGRQF', -INFO ) RETURN ELSE IF( LQUERY ) THEN RETURN END IF * * RQ factorization of M-by-N matrix A: A = R*Q * CALL CGERQF( M, N, A, LDA, TAUA, WORK, LWORK, INFO ) LOPT = WORK( 1 ) * * Update B := B*Q' * CALL CUNMRQ( 'Right', 'Conjugate Transpose', P, N, MIN( M, N ), \$ A( MAX( 1, M-N+1 ), 1 ), LDA, TAUA, B, LDB, WORK, \$ LWORK, INFO ) LOPT = MAX( LOPT, INT( WORK( 1 ) ) ) * * QR factorization of P-by-N matrix B: B = Z*T * CALL CGEQRF( P, N, B, LDB, TAUB, WORK, LWORK, INFO ) WORK( 1 ) = MAX( LOPT, INT( WORK( 1 ) ) ) * RETURN * * End of CGGRQF * END