SUBROUTINE CGECON( NORM, N, A, LDA, ANORM, RCOND, WORK, RWORK, \$ INFO ) * * -- LAPACK routine (version 3.2) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * November 2006 * * Modified to call CLACN2 in place of CLACON, 10 Feb 03, SJH. * * .. Scalar Arguments .. CHARACTER NORM INTEGER INFO, LDA, N REAL ANORM, RCOND * .. * .. Array Arguments .. REAL RWORK( * ) COMPLEX A( LDA, * ), WORK( * ) * .. * * Purpose * ======= * * CGECON estimates the reciprocal of the condition number of a general * complex matrix A, in either the 1-norm or the infinity-norm, using * the LU factorization computed by CGETRF. * * An estimate is obtained for norm(inv(A)), and the reciprocal of the * condition number is computed as * RCOND = 1 / ( norm(A) * norm(inv(A)) ). * * Arguments * ========= * * NORM (input) CHARACTER*1 * Specifies whether the 1-norm condition number or the * infinity-norm condition number is required: * = '1' or 'O': 1-norm; * = 'I': Infinity-norm. * * N (input) INTEGER * The order of the matrix A. N >= 0. * * A (input) COMPLEX array, dimension (LDA,N) * The factors L and U from the factorization A = P*L*U * as computed by CGETRF. * * LDA (input) INTEGER * The leading dimension of the array A. LDA >= max(1,N). * * ANORM (input) REAL * If NORM = '1' or 'O', the 1-norm of the original matrix A. * If NORM = 'I', the infinity-norm of the original matrix A. * * RCOND (output) REAL * The reciprocal of the condition number of the matrix A, * computed as RCOND = 1/(norm(A) * norm(inv(A))). * * WORK (workspace) COMPLEX array, dimension (2*N) * * RWORK (workspace) REAL array, dimension (2*N) * * INFO (output) INTEGER * = 0: successful exit * < 0: if INFO = -i, the i-th argument had an illegal value * * ===================================================================== * * .. Parameters .. REAL ONE, ZERO PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 ) * .. * .. Local Scalars .. LOGICAL ONENRM CHARACTER NORMIN INTEGER IX, KASE, KASE1 REAL AINVNM, SCALE, SL, SMLNUM, SU COMPLEX ZDUM * .. * .. Local Arrays .. INTEGER ISAVE( 3 ) * .. * .. External Functions .. LOGICAL LSAME INTEGER ICAMAX REAL SLAMCH EXTERNAL LSAME, ICAMAX, SLAMCH * .. * .. External Subroutines .. EXTERNAL CLACN2, CLATRS, CSRSCL, XERBLA * .. * .. Intrinsic Functions .. INTRINSIC ABS, AIMAG, MAX, REAL * .. * .. Statement Functions .. REAL CABS1 * .. * .. Statement Function definitions .. CABS1( ZDUM ) = ABS( REAL( ZDUM ) ) + ABS( AIMAG( ZDUM ) ) * .. * .. Executable Statements .. * * Test the input parameters. * INFO = 0 ONENRM = NORM.EQ.'1' .OR. LSAME( NORM, 'O' ) IF( .NOT.ONENRM .AND. .NOT.LSAME( NORM, 'I' ) ) THEN INFO = -1 ELSE IF( N.LT.0 ) THEN INFO = -2 ELSE IF( LDA.LT.MAX( 1, N ) ) THEN INFO = -4 ELSE IF( ANORM.LT.ZERO ) THEN INFO = -5 END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'CGECON', -INFO ) RETURN END IF * * Quick return if possible * RCOND = ZERO IF( N.EQ.0 ) THEN RCOND = ONE RETURN ELSE IF( ANORM.EQ.ZERO ) THEN RETURN END IF * SMLNUM = SLAMCH( 'Safe minimum' ) * * Estimate the norm of inv(A). * AINVNM = ZERO NORMIN = 'N' IF( ONENRM ) THEN KASE1 = 1 ELSE KASE1 = 2 END IF KASE = 0 10 CONTINUE CALL CLACN2( N, WORK( N+1 ), WORK, AINVNM, KASE, ISAVE ) IF( KASE.NE.0 ) THEN IF( KASE.EQ.KASE1 ) THEN * * Multiply by inv(L). * CALL CLATRS( 'Lower', 'No transpose', 'Unit', NORMIN, N, A, \$ LDA, WORK, SL, RWORK, INFO ) * * Multiply by inv(U). * CALL CLATRS( 'Upper', 'No transpose', 'Non-unit', NORMIN, N, \$ A, LDA, WORK, SU, RWORK( N+1 ), INFO ) ELSE * * Multiply by inv(U'). * CALL CLATRS( 'Upper', 'Conjugate transpose', 'Non-unit', \$ NORMIN, N, A, LDA, WORK, SU, RWORK( N+1 ), \$ INFO ) * * Multiply by inv(L'). * CALL CLATRS( 'Lower', 'Conjugate transpose', 'Unit', NORMIN, \$ N, A, LDA, WORK, SL, RWORK, INFO ) END IF * * Divide X by 1/(SL*SU) if doing so will not cause overflow. * SCALE = SL*SU NORMIN = 'Y' IF( SCALE.NE.ONE ) THEN IX = ICAMAX( N, WORK, 1 ) IF( SCALE.LT.CABS1( WORK( IX ) )*SMLNUM .OR. SCALE.EQ.ZERO ) \$ GO TO 20 CALL CSRSCL( N, SCALE, WORK, 1 ) END IF GO TO 10 END IF * * Compute the estimate of the reciprocal condition number. * IF( AINVNM.NE.ZERO ) \$ RCOND = ( ONE / AINVNM ) / ANORM * 20 CONTINUE RETURN * * End of CGECON * END