SUBROUTINE CGBBRD( VECT, M, N, NCC, KL, KU, AB, LDAB, D, E, Q, \$ LDQ, PT, LDPT, C, LDC, WORK, RWORK, INFO ) * * -- LAPACK routine (version 3.2) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * November 2006 * * .. Scalar Arguments .. CHARACTER VECT INTEGER INFO, KL, KU, LDAB, LDC, LDPT, LDQ, M, N, NCC * .. * .. Array Arguments .. REAL D( * ), E( * ), RWORK( * ) COMPLEX AB( LDAB, * ), C( LDC, * ), PT( LDPT, * ), \$ Q( LDQ, * ), WORK( * ) * .. * * Purpose * ======= * * CGBBRD reduces a complex general m-by-n band matrix A to real upper * bidiagonal form B by a unitary transformation: Q' * A * P = B. * * The routine computes B, and optionally forms Q or P', or computes * Q'*C for a given matrix C. * * Arguments * ========= * * VECT (input) CHARACTER*1 * Specifies whether or not the matrices Q and P' are to be * formed. * = 'N': do not form Q or P'; * = 'Q': form Q only; * = 'P': form P' only; * = 'B': form both. * * M (input) INTEGER * The number of rows of the matrix A. M >= 0. * * N (input) INTEGER * The number of columns of the matrix A. N >= 0. * * NCC (input) INTEGER * The number of columns of the matrix C. NCC >= 0. * * KL (input) INTEGER * The number of subdiagonals of the matrix A. KL >= 0. * * KU (input) INTEGER * The number of superdiagonals of the matrix A. KU >= 0. * * AB (input/output) COMPLEX array, dimension (LDAB,N) * On entry, the m-by-n band matrix A, stored in rows 1 to * KL+KU+1. The j-th column of A is stored in the j-th column of * the array AB as follows: * AB(ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(m,j+kl). * On exit, A is overwritten by values generated during the * reduction. * * LDAB (input) INTEGER * The leading dimension of the array A. LDAB >= KL+KU+1. * * D (output) REAL array, dimension (min(M,N)) * The diagonal elements of the bidiagonal matrix B. * * E (output) REAL array, dimension (min(M,N)-1) * The superdiagonal elements of the bidiagonal matrix B. * * Q (output) COMPLEX array, dimension (LDQ,M) * If VECT = 'Q' or 'B', the m-by-m unitary matrix Q. * If VECT = 'N' or 'P', the array Q is not referenced. * * LDQ (input) INTEGER * The leading dimension of the array Q. * LDQ >= max(1,M) if VECT = 'Q' or 'B'; LDQ >= 1 otherwise. * * PT (output) COMPLEX array, dimension (LDPT,N) * If VECT = 'P' or 'B', the n-by-n unitary matrix P'. * If VECT = 'N' or 'Q', the array PT is not referenced. * * LDPT (input) INTEGER * The leading dimension of the array PT. * LDPT >= max(1,N) if VECT = 'P' or 'B'; LDPT >= 1 otherwise. * * C (input/output) COMPLEX array, dimension (LDC,NCC) * On entry, an m-by-ncc matrix C. * On exit, C is overwritten by Q'*C. * C is not referenced if NCC = 0. * * LDC (input) INTEGER * The leading dimension of the array C. * LDC >= max(1,M) if NCC > 0; LDC >= 1 if NCC = 0. * * WORK (workspace) COMPLEX array, dimension (max(M,N)) * * RWORK (workspace) REAL array, dimension (max(M,N)) * * INFO (output) INTEGER * = 0: successful exit. * < 0: if INFO = -i, the i-th argument had an illegal value. * * ===================================================================== * * .. Parameters .. REAL ZERO PARAMETER ( ZERO = 0.0E+0 ) COMPLEX CZERO, CONE PARAMETER ( CZERO = ( 0.0E+0, 0.0E+0 ), \$ CONE = ( 1.0E+0, 0.0E+0 ) ) * .. * .. Local Scalars .. LOGICAL WANTB, WANTC, WANTPT, WANTQ INTEGER I, INCA, J, J1, J2, KB, KB1, KK, KLM, KLU1, \$ KUN, L, MINMN, ML, ML0, MU, MU0, NR, NRT REAL ABST, RC COMPLEX RA, RB, RS, T * .. * .. External Subroutines .. EXTERNAL CLARGV, CLARTG, CLARTV, CLASET, CROT, CSCAL, \$ XERBLA * .. * .. Intrinsic Functions .. INTRINSIC ABS, CONJG, MAX, MIN * .. * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. Executable Statements .. * * Test the input parameters * WANTB = LSAME( VECT, 'B' ) WANTQ = LSAME( VECT, 'Q' ) .OR. WANTB WANTPT = LSAME( VECT, 'P' ) .OR. WANTB WANTC = NCC.GT.0 KLU1 = KL + KU + 1 INFO = 0 IF( .NOT.WANTQ .AND. .NOT.WANTPT .AND. .NOT.LSAME( VECT, 'N' ) ) \$ THEN INFO = -1 ELSE IF( M.LT.0 ) THEN INFO = -2 ELSE IF( N.LT.0 ) THEN INFO = -3 ELSE IF( NCC.LT.0 ) THEN INFO = -4 ELSE IF( KL.LT.0 ) THEN INFO = -5 ELSE IF( KU.LT.0 ) THEN INFO = -6 ELSE IF( LDAB.LT.KLU1 ) THEN INFO = -8 ELSE IF( LDQ.LT.1 .OR. WANTQ .AND. LDQ.LT.MAX( 1, M ) ) THEN INFO = -12 ELSE IF( LDPT.LT.1 .OR. WANTPT .AND. LDPT.LT.MAX( 1, N ) ) THEN INFO = -14 ELSE IF( LDC.LT.1 .OR. WANTC .AND. LDC.LT.MAX( 1, M ) ) THEN INFO = -16 END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'CGBBRD', -INFO ) RETURN END IF * * Initialize Q and P' to the unit matrix, if needed * IF( WANTQ ) \$ CALL CLASET( 'Full', M, M, CZERO, CONE, Q, LDQ ) IF( WANTPT ) \$ CALL CLASET( 'Full', N, N, CZERO, CONE, PT, LDPT ) * * Quick return if possible. * IF( M.EQ.0 .OR. N.EQ.0 ) \$ RETURN * MINMN = MIN( M, N ) * IF( KL+KU.GT.1 ) THEN * * Reduce to upper bidiagonal form if KU > 0; if KU = 0, reduce * first to lower bidiagonal form and then transform to upper * bidiagonal * IF( KU.GT.0 ) THEN ML0 = 1 MU0 = 2 ELSE ML0 = 2 MU0 = 1 END IF * * Wherever possible, plane rotations are generated and applied in * vector operations of length NR over the index set J1:J2:KLU1. * * The complex sines of the plane rotations are stored in WORK, * and the real cosines in RWORK. * KLM = MIN( M-1, KL ) KUN = MIN( N-1, KU ) KB = KLM + KUN KB1 = KB + 1 INCA = KB1*LDAB NR = 0 J1 = KLM + 2 J2 = 1 - KUN * DO 90 I = 1, MINMN * * Reduce i-th column and i-th row of matrix to bidiagonal form * ML = KLM + 1 MU = KUN + 1 DO 80 KK = 1, KB J1 = J1 + KB J2 = J2 + KB * * generate plane rotations to annihilate nonzero elements * which have been created below the band * IF( NR.GT.0 ) \$ CALL CLARGV( NR, AB( KLU1, J1-KLM-1 ), INCA, \$ WORK( J1 ), KB1, RWORK( J1 ), KB1 ) * * apply plane rotations from the left * DO 10 L = 1, KB IF( J2-KLM+L-1.GT.N ) THEN NRT = NR - 1 ELSE NRT = NR END IF IF( NRT.GT.0 ) \$ CALL CLARTV( NRT, AB( KLU1-L, J1-KLM+L-1 ), INCA, \$ AB( KLU1-L+1, J1-KLM+L-1 ), INCA, \$ RWORK( J1 ), WORK( J1 ), KB1 ) 10 CONTINUE * IF( ML.GT.ML0 ) THEN IF( ML.LE.M-I+1 ) THEN * * generate plane rotation to annihilate a(i+ml-1,i) * within the band, and apply rotation from the left * CALL CLARTG( AB( KU+ML-1, I ), AB( KU+ML, I ), \$ RWORK( I+ML-1 ), WORK( I+ML-1 ), RA ) AB( KU+ML-1, I ) = RA IF( I.LT.N ) \$ CALL CROT( MIN( KU+ML-2, N-I ), \$ AB( KU+ML-2, I+1 ), LDAB-1, \$ AB( KU+ML-1, I+1 ), LDAB-1, \$ RWORK( I+ML-1 ), WORK( I+ML-1 ) ) END IF NR = NR + 1 J1 = J1 - KB1 END IF * IF( WANTQ ) THEN * * accumulate product of plane rotations in Q * DO 20 J = J1, J2, KB1 CALL CROT( M, Q( 1, J-1 ), 1, Q( 1, J ), 1, \$ RWORK( J ), CONJG( WORK( J ) ) ) 20 CONTINUE END IF * IF( WANTC ) THEN * * apply plane rotations to C * DO 30 J = J1, J2, KB1 CALL CROT( NCC, C( J-1, 1 ), LDC, C( J, 1 ), LDC, \$ RWORK( J ), WORK( J ) ) 30 CONTINUE END IF * IF( J2+KUN.GT.N ) THEN * * adjust J2 to keep within the bounds of the matrix * NR = NR - 1 J2 = J2 - KB1 END IF * DO 40 J = J1, J2, KB1 * * create nonzero element a(j-1,j+ku) above the band * and store it in WORK(n+1:2*n) * WORK( J+KUN ) = WORK( J )*AB( 1, J+KUN ) AB( 1, J+KUN ) = RWORK( J )*AB( 1, J+KUN ) 40 CONTINUE * * generate plane rotations to annihilate nonzero elements * which have been generated above the band * IF( NR.GT.0 ) \$ CALL CLARGV( NR, AB( 1, J1+KUN-1 ), INCA, \$ WORK( J1+KUN ), KB1, RWORK( J1+KUN ), \$ KB1 ) * * apply plane rotations from the right * DO 50 L = 1, KB IF( J2+L-1.GT.M ) THEN NRT = NR - 1 ELSE NRT = NR END IF IF( NRT.GT.0 ) \$ CALL CLARTV( NRT, AB( L+1, J1+KUN-1 ), INCA, \$ AB( L, J1+KUN ), INCA, \$ RWORK( J1+KUN ), WORK( J1+KUN ), KB1 ) 50 CONTINUE * IF( ML.EQ.ML0 .AND. MU.GT.MU0 ) THEN IF( MU.LE.N-I+1 ) THEN * * generate plane rotation to annihilate a(i,i+mu-1) * within the band, and apply rotation from the right * CALL CLARTG( AB( KU-MU+3, I+MU-2 ), \$ AB( KU-MU+2, I+MU-1 ), \$ RWORK( I+MU-1 ), WORK( I+MU-1 ), RA ) AB( KU-MU+3, I+MU-2 ) = RA CALL CROT( MIN( KL+MU-2, M-I ), \$ AB( KU-MU+4, I+MU-2 ), 1, \$ AB( KU-MU+3, I+MU-1 ), 1, \$ RWORK( I+MU-1 ), WORK( I+MU-1 ) ) END IF NR = NR + 1 J1 = J1 - KB1 END IF * IF( WANTPT ) THEN * * accumulate product of plane rotations in P' * DO 60 J = J1, J2, KB1 CALL CROT( N, PT( J+KUN-1, 1 ), LDPT, \$ PT( J+KUN, 1 ), LDPT, RWORK( J+KUN ), \$ CONJG( WORK( J+KUN ) ) ) 60 CONTINUE END IF * IF( J2+KB.GT.M ) THEN * * adjust J2 to keep within the bounds of the matrix * NR = NR - 1 J2 = J2 - KB1 END IF * DO 70 J = J1, J2, KB1 * * create nonzero element a(j+kl+ku,j+ku-1) below the * band and store it in WORK(1:n) * WORK( J+KB ) = WORK( J+KUN )*AB( KLU1, J+KUN ) AB( KLU1, J+KUN ) = RWORK( J+KUN )*AB( KLU1, J+KUN ) 70 CONTINUE * IF( ML.GT.ML0 ) THEN ML = ML - 1 ELSE MU = MU - 1 END IF 80 CONTINUE 90 CONTINUE END IF * IF( KU.EQ.0 .AND. KL.GT.0 ) THEN * * A has been reduced to complex lower bidiagonal form * * Transform lower bidiagonal form to upper bidiagonal by applying * plane rotations from the left, overwriting superdiagonal * elements on subdiagonal elements * DO 100 I = 1, MIN( M-1, N ) CALL CLARTG( AB( 1, I ), AB( 2, I ), RC, RS, RA ) AB( 1, I ) = RA IF( I.LT.N ) THEN AB( 2, I ) = RS*AB( 1, I+1 ) AB( 1, I+1 ) = RC*AB( 1, I+1 ) END IF IF( WANTQ ) \$ CALL CROT( M, Q( 1, I ), 1, Q( 1, I+1 ), 1, RC, \$ CONJG( RS ) ) IF( WANTC ) \$ CALL CROT( NCC, C( I, 1 ), LDC, C( I+1, 1 ), LDC, RC, \$ RS ) 100 CONTINUE ELSE * * A has been reduced to complex upper bidiagonal form or is * diagonal * IF( KU.GT.0 .AND. M.LT.N ) THEN * * Annihilate a(m,m+1) by applying plane rotations from the * right * RB = AB( KU, M+1 ) DO 110 I = M, 1, -1 CALL CLARTG( AB( KU+1, I ), RB, RC, RS, RA ) AB( KU+1, I ) = RA IF( I.GT.1 ) THEN RB = -CONJG( RS )*AB( KU, I ) AB( KU, I ) = RC*AB( KU, I ) END IF IF( WANTPT ) \$ CALL CROT( N, PT( I, 1 ), LDPT, PT( M+1, 1 ), LDPT, \$ RC, CONJG( RS ) ) 110 CONTINUE END IF END IF * * Make diagonal and superdiagonal elements real, storing them in D * and E * T = AB( KU+1, 1 ) DO 120 I = 1, MINMN ABST = ABS( T ) D( I ) = ABST IF( ABST.NE.ZERO ) THEN T = T / ABST ELSE T = CONE END IF IF( WANTQ ) \$ CALL CSCAL( M, T, Q( 1, I ), 1 ) IF( WANTC ) \$ CALL CSCAL( NCC, CONJG( T ), C( I, 1 ), LDC ) IF( I.LT.MINMN ) THEN IF( KU.EQ.0 .AND. KL.EQ.0 ) THEN E( I ) = ZERO T = AB( 1, I+1 ) ELSE IF( KU.EQ.0 ) THEN T = AB( 2, I )*CONJG( T ) ELSE T = AB( KU, I+1 )*CONJG( T ) END IF ABST = ABS( T ) E( I ) = ABST IF( ABST.NE.ZERO ) THEN T = T / ABST ELSE T = CONE END IF IF( WANTPT ) \$ CALL CSCAL( N, T, PT( I+1, 1 ), LDPT ) T = AB( KU+1, I+1 )*CONJG( T ) END IF END IF 120 CONTINUE RETURN * * End of CGBBRD * END