SUBROUTINE CDRGSX( NSIZE, NCMAX, THRESH, NIN, NOUT, A, LDA, B,
     $                   AI, BI, Z, Q, ALPHA, BETA, C, LDC, S, WORK,
     $                   LWORK, RWORK, IWORK, LIWORK, BWORK, INFO )
*
*  -- LAPACK test routine (version 3.1) --
*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
*     November 2006
*
*     .. Scalar Arguments ..
      INTEGER            INFO, LDA, LDC, LIWORK, LWORK, NCMAX, NIN,
     $                   NOUT, NSIZE
      REAL               THRESH
*     ..
*     .. Array Arguments ..
      LOGICAL            BWORK( * )
      INTEGER            IWORK( * )
      REAL               RWORK( * ), S( * )
      COMPLEX            A( LDA, * ), AI( LDA, * ), ALPHA( * ),
     $                   B( LDA, * ), BETA( * ), BI( LDA, * ),
     $                   C( LDC, * ), Q( LDA, * ), WORK( * ),
     $                   Z( LDA, * )
*     ..
*
*  Purpose
*  =======
*
*  CDRGSX checks the nonsymmetric generalized eigenvalue (Schur form)
*  problem expert driver CGGESX.
*
*  CGGES factors A and B as Q*S*Z'  and Q*T*Z' , where ' means conjugate
*  transpose, S and T are  upper triangular (i.e., in generalized Schur
*  form), and Q and Z are unitary. It also computes the generalized
*  eigenvalues (alpha(j),beta(j)), j=1,...,n.  Thus,
*  w(j) = alpha(j)/beta(j) is a root of the characteristic equation
*
*                  det( A - w(j) B ) = 0
*
*  Optionally it also reorders the eigenvalues so that a selected
*  cluster of eigenvalues appears in the leading diagonal block of the
*  Schur forms; computes a reciprocal condition number for the average
*  of the selected eigenvalues; and computes a reciprocal condition
*  number for the right and left deflating subspaces corresponding to
*  the selected eigenvalues.
*
*  When CDRGSX is called with NSIZE > 0, five (5) types of built-in
*  matrix pairs are used to test the routine CGGESX.
*
*  When CDRGSX is called with NSIZE = 0, it reads in test matrix data
*  to test CGGESX.
*  (need more details on what kind of read-in data are needed).
*
*  For each matrix pair, the following tests will be performed and
*  compared with the threshhold THRESH except for the tests (7) and (9):
*
*  (1)   | A - Q S Z' | / ( |A| n ulp )
*
*  (2)   | B - Q T Z' | / ( |B| n ulp )
*
*  (3)   | I - QQ' | / ( n ulp )
*
*  (4)   | I - ZZ' | / ( n ulp )
*
*  (5)   if A is in Schur form (i.e. triangular form)
*
*  (6)   maximum over j of D(j)  where:
*
*                      |alpha(j) - S(j,j)|        |beta(j) - T(j,j)|
*            D(j) = ------------------------ + -----------------------
*                   max(|alpha(j)|,|S(j,j)|)   max(|beta(j)|,|T(j,j)|)
*
*  (7)   if sorting worked and SDIM is the number of eigenvalues
*        which were selected.
*
*  (8)   the estimated value DIF does not differ from the true values of
*        Difu and Difl more than a factor 10*THRESH. If the estimate DIF
*        equals zero the corresponding true values of Difu and Difl
*        should be less than EPS*norm(A, B). If the true value of Difu
*        and Difl equal zero, the estimate DIF should be less than
*        EPS*norm(A, B).
*
*  (9)   If INFO = N+3 is returned by CGGESX, the reordering "failed"
*        and we check that DIF = PL = PR = 0 and that the true value of
*        Difu and Difl is < EPS*norm(A, B). We count the events when
*        INFO=N+3.
*
*  For read-in test matrices, the same tests are run except that the
*  exact value for DIF (and PL) is input data.  Additionally, there is
*  one more test run for read-in test matrices:
*
*  (10)  the estimated value PL does not differ from the true value of
*        PLTRU more than a factor THRESH. If the estimate PL equals
*        zero the corresponding true value of PLTRU should be less than
*        EPS*norm(A, B). If the true value of PLTRU equal zero, the
*        estimate PL should be less than EPS*norm(A, B).
*
*  Note that for the built-in tests, a total of 10*NSIZE*(NSIZE-1)
*  matrix pairs are generated and tested. NSIZE should be kept small.
*
*  SVD (routine CGESVD) is used for computing the true value of DIF_u
*  and DIF_l when testing the built-in test problems.
*
*  Built-in Test Matrices
*  ======================
*
*  All built-in test matrices are the 2 by 2 block of triangular
*  matrices
*
*           A = [ A11 A12 ]    and      B = [ B11 B12 ]
*               [     A22 ]                 [     B22 ]
*
*  where for different type of A11 and A22 are given as the following.
*  A12 and B12 are chosen so that the generalized Sylvester equation
*
*           A11*R - L*A22 = -A12
*           B11*R - L*B22 = -B12
*
*  have prescribed solution R and L.
*
*  Type 1:  A11 = J_m(1,-1) and A_22 = J_k(1-a,1).
*           B11 = I_m, B22 = I_k
*           where J_k(a,b) is the k-by-k Jordan block with ``a'' on
*           diagonal and ``b'' on superdiagonal.
*
*  Type 2:  A11 = (a_ij) = ( 2(.5-sin(i)) ) and
*           B11 = (b_ij) = ( 2(.5-sin(ij)) ) for i=1,...,m, j=i,...,m
*           A22 = (a_ij) = ( 2(.5-sin(i+j)) ) and
*           B22 = (b_ij) = ( 2(.5-sin(ij)) ) for i=m+1,...,k, j=i,...,k
*
*  Type 3:  A11, A22 and B11, B22 are chosen as for Type 2, but each
*           second diagonal block in A_11 and each third diagonal block
*           in A_22 are made as 2 by 2 blocks.
*
*  Type 4:  A11 = ( 20(.5 - sin(ij)) ) and B22 = ( 2(.5 - sin(i+j)) )
*              for i=1,...,m,  j=1,...,m and
*           A22 = ( 20(.5 - sin(i+j)) ) and B22 = ( 2(.5 - sin(ij)) )
*              for i=m+1,...,k,  j=m+1,...,k
*
*  Type 5:  (A,B) and have potentially close or common eigenvalues and
*           very large departure from block diagonality A_11 is chosen
*           as the m x m leading submatrix of A_1:
*                   |  1  b                            |
*                   | -b  1                            |
*                   |        1+d  b                    |
*                   |         -b 1+d                   |
*            A_1 =  |                  d  1            |
*                   |                 -1  d            |
*                   |                        -d  1     |
*                   |                        -1 -d     |
*                   |                               1  |
*           and A_22 is chosen as the k x k leading submatrix of A_2:
*                   | -1  b                            |
*                   | -b -1                            |
*                   |       1-d  b                     |
*                   |       -b  1-d                    |
*            A_2 =  |                 d 1+b            |
*                   |               -1-b d             |
*                   |                       -d  1+b    |
*                   |                      -1+b  -d    |
*                   |                              1-d |
*           and matrix B are chosen as identity matrices (see SLATM5).
*
*
*  Arguments
*  =========
*
*  NSIZE   (input) INTEGER
*          The maximum size of the matrices to use. NSIZE >= 0.
*          If NSIZE = 0, no built-in tests matrices are used, but
*          read-in test matrices are used to test SGGESX.
*
*  NCMAX   (input) INTEGER
*          Maximum allowable NMAX for generating Kroneker matrix
*          in call to CLAKF2
*
*  THRESH  (input) REAL
*          A test will count as "failed" if the "error", computed as
*          described above, exceeds THRESH.  Note that the error
*          is scaled to be O(1), so THRESH should be a reasonably
*          small multiple of 1, e.g., 10 or 100.  In particular,
*          it should not depend on the precision (single vs. double)
*          or the size of the matrix.  THRESH >= 0.
*
*  NIN     (input) INTEGER
*          The FORTRAN unit number for reading in the data file of
*          problems to solve.
*
*  NOUT    (input) INTEGER
*          The FORTRAN unit number for printing out error messages
*          (e.g., if a routine returns INFO not equal to 0.)
*
*  A       (workspace) COMPLEX array, dimension (LDA, NSIZE)
*          Used to store the matrix whose eigenvalues are to be
*          computed.  On exit, A contains the last matrix actually used.
*
*  LDA     (input) INTEGER
*          The leading dimension of A, B, AI, BI, Z and Q,
*          LDA >= max( 1, NSIZE ). For the read-in test,
*          LDA >= max( 1, N ), N is the size of the test matrices.
*
*  B       (workspace) COMPLEX array, dimension (LDA, NSIZE)
*          Used to store the matrix whose eigenvalues are to be
*          computed.  On exit, B contains the last matrix actually used.
*
*  AI      (workspace) COMPLEX array, dimension (LDA, NSIZE)
*          Copy of A, modified by CGGESX.
*
*  BI      (workspace) COMPLEX array, dimension (LDA, NSIZE)
*          Copy of B, modified by CGGESX.
*
*  Z       (workspace) COMPLEX array, dimension (LDA, NSIZE)
*          Z holds the left Schur vectors computed by CGGESX.
*
*  Q       (workspace) COMPLEX array, dimension (LDA, NSIZE)
*          Q holds the right Schur vectors computed by CGGESX.
*
*  ALPHA   (workspace) COMPLEX array, dimension (NSIZE)
*  BETA    (workspace) COMPLEX array, dimension (NSIZE)
*          On exit, ALPHA/BETA are the eigenvalues.
*
*  C       (workspace) COMPLEX array, dimension (LDC, LDC)
*          Store the matrix generated by subroutine CLAKF2, this is the
*          matrix formed by Kronecker products used for estimating
*          DIF.
*
*  LDC     (input) INTEGER
*          The leading dimension of C. LDC >= max(1, LDA*LDA/2 ).
*
*  S       (workspace) REAL array, dimension (LDC)
*          Singular values of C
*
*  WORK    (workspace) COMPLEX array, dimension (LWORK)
*
*  LWORK   (input) INTEGER
*          The dimension of the array WORK.  LWORK >= 3*NSIZE*NSIZE/2
*
*  RWORK   (workspace) REAL array,
*                                 dimension (5*NSIZE*NSIZE/2 - 4)
*
*  IWORK   (workspace) INTEGER array, dimension (LIWORK)
*
*  LIWORK  (input) INTEGER
*          The dimension of the array IWORK. LIWORK >= NSIZE + 2.
*
*  BWORK   (workspace) LOGICAL array, dimension (NSIZE)
*
*  INFO    (output) INTEGER
*          = 0:  successful exit
*          < 0:  if INFO = -i, the i-th argument had an illegal value.
*          > 0:  A routine returned an error code.
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ZERO, ONE, TEN
      PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0, TEN = 1.0E+1 )
      COMPLEX            CZERO
      PARAMETER          ( CZERO = ( 0.0E+0, 0.0E+0 ) )
*     ..
*     .. Local Scalars ..
      LOGICAL            ILABAD
      CHARACTER          SENSE
      INTEGER            BDSPAC, I, IFUNC, J, LINFO, MAXWRK, MINWRK, MM,
     $                   MN2, NERRS, NPTKNT, NTEST, NTESTT, PRTYPE, QBA,
     $                   QBB
      REAL               ABNRM, BIGNUM, DIFTRU, PLTRU, SMLNUM, TEMP1,
     $                   TEMP2, THRSH2, ULP, ULPINV, WEIGHT
      COMPLEX            X
*     ..
*     .. Local Arrays ..
      REAL               DIFEST( 2 ), PL( 2 ), RESULT( 10 )
*     ..
*     .. External Functions ..
      LOGICAL            CLCTSX
      INTEGER            ILAENV
      REAL               CLANGE, SLAMCH
      EXTERNAL           CLCTSX, ILAENV, CLANGE, SLAMCH
*     ..
*     .. External Subroutines ..
      EXTERNAL           ALASVM, CGESVD, CGET51, CGGESX, CLACPY, CLAKF2,
     $                   CLASET, CLATM5, SLABAD, XERBLA
*     ..
*     .. Scalars in Common ..
      LOGICAL            FS
      INTEGER            K, M, MPLUSN, N
*     ..
*     .. Common blocks ..
      COMMON             / MN / M, N, MPLUSN, K, FS
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, AIMAG, MAX, REAL, SQRT
*     ..
*     .. Statement Functions ..
      REAL               ABS1
*     ..
*     .. Statement Function definitions ..
      ABS1( X ) = ABS( REAL( X ) ) + ABS( AIMAG( X ) )
*     ..
*     .. Executable Statements ..
*
*     Check for errors
*
      IF( NSIZE.LT.0 ) THEN
         INFO = -1
      ELSE IF( THRESH.LT.ZERO ) THEN
         INFO = -2
      ELSE IF( NIN.LE.0 ) THEN
         INFO = -3
      ELSE IF( NOUT.LE.0 ) THEN
         INFO = -4
      ELSE IF( LDA.LT.1 .OR. LDA.LT.NSIZE ) THEN
         INFO = -6
      ELSE IF( LDC.LT.1 .OR. LDC.LT.NSIZE*NSIZE / 2 ) THEN
         INFO = -15
      ELSE IF( LIWORK.LT.NSIZE+2 ) THEN
         INFO = -21
      END IF
*
*     Compute workspace
*      (Note: Comments in the code beginning "Workspace:" describe the
*       minimal amount of workspace needed at that point in the code,
*       as well as the preferred amount for good performance.
*       NB refers to the optimal block size for the immediately
*       following subroutine, as returned by ILAENV.)
*
      MINWRK = 1
      IF( INFO.EQ.0 .AND. LWORK.GE.1 ) THEN
         MINWRK = 3*NSIZE*NSIZE / 2
*
*        workspace for cggesx
*
         MAXWRK = NSIZE*( 1+ILAENV( 1, 'CGEQRF', ' ', NSIZE, 1, NSIZE,
     $            0 ) )
         MAXWRK = MAX( MAXWRK, NSIZE*( 1+ILAENV( 1, 'CUNGQR', ' ',
     $            NSIZE, 1, NSIZE, -1 ) ) )
*
*        workspace for cgesvd
*
         BDSPAC = 3*NSIZE*NSIZE / 2
         MAXWRK = MAX( MAXWRK, NSIZE*NSIZE*
     $            ( 1+ILAENV( 1, 'CGEBRD', ' ', NSIZE*NSIZE / 2,
     $            NSIZE*NSIZE / 2, -1, -1 ) ) )
         MAXWRK = MAX( MAXWRK, BDSPAC )
*
         MAXWRK = MAX( MAXWRK, MINWRK )
*
         WORK( 1 ) = MAXWRK
      END IF
*
      IF( LWORK.LT.MINWRK )
     $   INFO = -18
*
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'CDRGSX', -INFO )
         RETURN
      END IF
*
*     Important constants
*
      ULP = SLAMCH( 'P' )
      ULPINV = ONE / ULP
      SMLNUM = SLAMCH( 'S' ) / ULP
      BIGNUM = ONE / SMLNUM
      CALL SLABAD( SMLNUM, BIGNUM )
      THRSH2 = TEN*THRESH
      NTESTT = 0
      NERRS = 0
*
*     Go to the tests for read-in matrix pairs
*
      IFUNC = 0
      IF( NSIZE.EQ.0 )
     $   GO TO 70
*
*     Test the built-in matrix pairs.
*     Loop over different functions (IFUNC) of CGGESX, types (PRTYPE)
*     of test matrices, different size (M+N)
*
      PRTYPE = 0
      QBA = 3
      QBB = 4
      WEIGHT = SQRT( ULP )
*
      DO 60 IFUNC = 0, 3
         DO 50 PRTYPE = 1, 5
            DO 40 M = 1, NSIZE - 1
               DO 30 N = 1, NSIZE - M
*
                  WEIGHT = ONE / WEIGHT
                  MPLUSN = M + N
*
*                 Generate test matrices
*
                  FS = .TRUE.
                  K = 0
*
                  CALL CLASET( 'Full', MPLUSN, MPLUSN, CZERO, CZERO, AI,
     $                         LDA )
                  CALL CLASET( 'Full', MPLUSN, MPLUSN, CZERO, CZERO, BI,
     $                         LDA )
*
                  CALL CLATM5( PRTYPE, M, N, AI, LDA, AI( M+1, M+1 ),
     $                         LDA, AI( 1, M+1 ), LDA, BI, LDA,
     $                         BI( M+1, M+1 ), LDA, BI( 1, M+1 ), LDA,
     $                         Q, LDA, Z, LDA, WEIGHT, QBA, QBB )
*
*                 Compute the Schur factorization and swapping the
*                 m-by-m (1,1)-blocks with n-by-n (2,2)-blocks.
*                 Swapping is accomplished via the function CLCTSX
*                 which is supplied below.
*
                  IF( IFUNC.EQ.0 ) THEN
                     SENSE = 'N'
                  ELSE IF( IFUNC.EQ.1 ) THEN
                     SENSE = 'E'
                  ELSE IF( IFUNC.EQ.2 ) THEN
                     SENSE = 'V'
                  ELSE IF( IFUNC.EQ.3 ) THEN
                     SENSE = 'B'
                  END IF
*
                  CALL CLACPY( 'Full', MPLUSN, MPLUSN, AI, LDA, A, LDA )
                  CALL CLACPY( 'Full', MPLUSN, MPLUSN, BI, LDA, B, LDA )
*
                  CALL CGGESX( 'V', 'V', 'S', CLCTSX, SENSE, MPLUSN, AI,
     $                         LDA, BI, LDA, MM, ALPHA, BETA, Q, LDA, Z,
     $                         LDA, PL, DIFEST, WORK, LWORK, RWORK,
     $                         IWORK, LIWORK, BWORK, LINFO )
*
                  IF( LINFO.NE.0 .AND. LINFO.NE.MPLUSN+2 ) THEN
                     RESULT( 1 ) = ULPINV
                     WRITE( NOUT, FMT = 9999 )'CGGESX', LINFO, MPLUSN,
     $                  PRTYPE
                     INFO = LINFO
                     GO TO 30
                  END IF
*
*                 Compute the norm(A, B)
*
                  CALL CLACPY( 'Full', MPLUSN, MPLUSN, AI, LDA, WORK,
     $                         MPLUSN )
                  CALL CLACPY( 'Full', MPLUSN, MPLUSN, BI, LDA,
     $                         WORK( MPLUSN*MPLUSN+1 ), MPLUSN )
                  ABNRM = CLANGE( 'Fro', MPLUSN, 2*MPLUSN, WORK, MPLUSN,
     $                    RWORK )
*
*                 Do tests (1) to (4)
*
                  RESULT( 2 ) = ZERO
                  CALL CGET51( 1, MPLUSN, A, LDA, AI, LDA, Q, LDA, Z,
     $                         LDA, WORK, RWORK, RESULT( 1 ) )
                  CALL CGET51( 1, MPLUSN, B, LDA, BI, LDA, Q, LDA, Z,
     $                         LDA, WORK, RWORK, RESULT( 2 ) )
                  CALL CGET51( 3, MPLUSN, B, LDA, BI, LDA, Q, LDA, Q,
     $                         LDA, WORK, RWORK, RESULT( 3 ) )
                  CALL CGET51( 3, MPLUSN, B, LDA, BI, LDA, Z, LDA, Z,
     $                         LDA, WORK, RWORK, RESULT( 4 ) )
                  NTEST = 4
*
*                 Do tests (5) and (6): check Schur form of A and
*                 compare eigenvalues with diagonals.
*
                  TEMP1 = ZERO
                  RESULT( 5 ) = ZERO
                  RESULT( 6 ) = ZERO
*
                  DO 10 J = 1, MPLUSN
                     ILABAD = .FALSE.
                     TEMP2 = ( ABS1( ALPHA( J )-AI( J, J ) ) /
     $                       MAX( SMLNUM, ABS1( ALPHA( J ) ),
     $                       ABS1( AI( J, J ) ) )+
     $                       ABS1( BETA( J )-BI( J, J ) ) /
     $                       MAX( SMLNUM, ABS1( BETA( J ) ),
     $                       ABS1( BI( J, J ) ) ) ) / ULP
                     IF( J.LT.MPLUSN ) THEN
                        IF( AI( J+1, J ).NE.ZERO ) THEN
                           ILABAD = .TRUE.
                           RESULT( 5 ) = ULPINV
                        END IF
                     END IF
                     IF( J.GT.1 ) THEN
                        IF( AI( J, J-1 ).NE.ZERO ) THEN
                           ILABAD = .TRUE.
                           RESULT( 5 ) = ULPINV
                        END IF
                     END IF
                     TEMP1 = MAX( TEMP1, TEMP2 )
                     IF( ILABAD ) THEN
                        WRITE( NOUT, FMT = 9997 )J, MPLUSN, PRTYPE
                     END IF
   10             CONTINUE
                  RESULT( 6 ) = TEMP1
                  NTEST = NTEST + 2
*
*                 Test (7) (if sorting worked)
*
                  RESULT( 7 ) = ZERO
                  IF( LINFO.EQ.MPLUSN+3 ) THEN
                     RESULT( 7 ) = ULPINV
                  ELSE IF( MM.NE.N ) THEN
                     RESULT( 7 ) = ULPINV
                  END IF
                  NTEST = NTEST + 1
*
*                 Test (8): compare the estimated value DIF and its
*                 value. first, compute the exact DIF.
*
                  RESULT( 8 ) = ZERO
                  MN2 = MM*( MPLUSN-MM )*2
                  IF( IFUNC.GE.2 .AND. MN2.LE.NCMAX*NCMAX ) THEN
*
*                    Note: for either following two cases, there are
*                    almost same number of test cases fail the test.
*
                     CALL CLAKF2( MM, MPLUSN-MM, AI, LDA,
     $                            AI( MM+1, MM+1 ), BI,
     $                            BI( MM+1, MM+1 ), C, LDC )
*
                     CALL CGESVD( 'N', 'N', MN2, MN2, C, LDC, S, WORK,
     $                            1, WORK( 2 ), 1, WORK( 3 ), LWORK-2,
     $                            RWORK, INFO )
                     DIFTRU = S( MN2 )
*
                     IF( DIFEST( 2 ).EQ.ZERO ) THEN
                        IF( DIFTRU.GT.ABNRM*ULP )
     $                     RESULT( 8 ) = ULPINV
                     ELSE IF( DIFTRU.EQ.ZERO ) THEN
                        IF( DIFEST( 2 ).GT.ABNRM*ULP )
     $                     RESULT( 8 ) = ULPINV
                     ELSE IF( ( DIFTRU.GT.THRSH2*DIFEST( 2 ) ) .OR.
     $                        ( DIFTRU*THRSH2.LT.DIFEST( 2 ) ) ) THEN
                        RESULT( 8 ) = MAX( DIFTRU / DIFEST( 2 ),
     $                                DIFEST( 2 ) / DIFTRU )
                     END IF
                     NTEST = NTEST + 1
                  END IF
*
*                 Test (9)
*
                  RESULT( 9 ) = ZERO
                  IF( LINFO.EQ.( MPLUSN+2 ) ) THEN
                     IF( DIFTRU.GT.ABNRM*ULP )
     $                  RESULT( 9 ) = ULPINV
                     IF( ( IFUNC.GT.1 ) .AND. ( DIFEST( 2 ).NE.ZERO ) )
     $                  RESULT( 9 ) = ULPINV
                     IF( ( IFUNC.EQ.1 ) .AND. ( PL( 1 ).NE.ZERO ) )
     $                  RESULT( 9 ) = ULPINV
                     NTEST = NTEST + 1
                  END IF
*
                  NTESTT = NTESTT + NTEST
*
*                 Print out tests which fail.
*
                  DO 20 J = 1, 9
                     IF( RESULT( J ).GE.THRESH ) THEN
*
*                       If this is the first test to fail,
*                       print a header to the data file.
*
                        IF( NERRS.EQ.0 ) THEN
                           WRITE( NOUT, FMT = 9996 )'CGX'
*
*                          Matrix types
*
                           WRITE( NOUT, FMT = 9994 )
*
*                          Tests performed
*
                           WRITE( NOUT, FMT = 9993 )'unitary', '''',
     $                        'transpose', ( '''', I = 1, 4 )
*
                        END IF
                        NERRS = NERRS + 1
                        IF( RESULT( J ).LT.10000.0 ) THEN
                           WRITE( NOUT, FMT = 9992 )MPLUSN, PRTYPE,
     $                        WEIGHT, M, J, RESULT( J )
                        ELSE
                           WRITE( NOUT, FMT = 9991 )MPLUSN, PRTYPE,
     $                        WEIGHT, M, J, RESULT( J )
                        END IF
                     END IF
   20             CONTINUE
*
   30          CONTINUE
   40       CONTINUE
   50    CONTINUE
   60 CONTINUE
*
      GO TO 150
*
   70 CONTINUE
*
*     Read in data from file to check accuracy of condition estimation
*     Read input data until N=0
*
      NPTKNT = 0
*
   80 CONTINUE
      READ( NIN, FMT = *, END = 140 )MPLUSN
      IF( MPLUSN.EQ.0 )
     $   GO TO 140
      READ( NIN, FMT = *, END = 140 )N
      DO 90 I = 1, MPLUSN
         READ( NIN, FMT = * )( AI( I, J ), J = 1, MPLUSN )
   90 CONTINUE
      DO 100 I = 1, MPLUSN
         READ( NIN, FMT = * )( BI( I, J ), J = 1, MPLUSN )
  100 CONTINUE
      READ( NIN, FMT = * )PLTRU, DIFTRU
*
      NPTKNT = NPTKNT + 1
      FS = .TRUE.
      K = 0
      M = MPLUSN - N
*
      CALL CLACPY( 'Full', MPLUSN, MPLUSN, AI, LDA, A, LDA )
      CALL CLACPY( 'Full', MPLUSN, MPLUSN, BI, LDA, B, LDA )
*
*     Compute the Schur factorization while swaping the
*     m-by-m (1,1)-blocks with n-by-n (2,2)-blocks.
*
      CALL CGGESX( 'V', 'V', 'S', CLCTSX, 'B', MPLUSN, AI, LDA, BI, LDA,
     $             MM, ALPHA, BETA, Q, LDA, Z, LDA, PL, DIFEST, WORK,
     $             LWORK, RWORK, IWORK, LIWORK, BWORK, LINFO )
*
      IF( LINFO.NE.0 .AND. LINFO.NE.MPLUSN+2 ) THEN
         RESULT( 1 ) = ULPINV
         WRITE( NOUT, FMT = 9998 )'CGGESX', LINFO, MPLUSN, NPTKNT
         GO TO 130
      END IF
*
*     Compute the norm(A, B)
*        (should this be norm of (A,B) or (AI,BI)?)
*
      CALL CLACPY( 'Full', MPLUSN, MPLUSN, AI, LDA, WORK, MPLUSN )
      CALL CLACPY( 'Full', MPLUSN, MPLUSN, BI, LDA,
     $             WORK( MPLUSN*MPLUSN+1 ), MPLUSN )
      ABNRM = CLANGE( 'Fro', MPLUSN, 2*MPLUSN, WORK, MPLUSN, RWORK )
*
*     Do tests (1) to (4)
*
      CALL CGET51( 1, MPLUSN, A, LDA, AI, LDA, Q, LDA, Z, LDA, WORK,
     $             RWORK, RESULT( 1 ) )
      CALL CGET51( 1, MPLUSN, B, LDA, BI, LDA, Q, LDA, Z, LDA, WORK,
     $             RWORK, RESULT( 2 ) )
      CALL CGET51( 3, MPLUSN, B, LDA, BI, LDA, Q, LDA, Q, LDA, WORK,
     $             RWORK, RESULT( 3 ) )
      CALL CGET51( 3, MPLUSN, B, LDA, BI, LDA, Z, LDA, Z, LDA, WORK,
     $             RWORK, RESULT( 4 ) )
*
*     Do tests (5) and (6): check Schur form of A and compare
*     eigenvalues with diagonals.
*
      NTEST = 6
      TEMP1 = ZERO
      RESULT( 5 ) = ZERO
      RESULT( 6 ) = ZERO
*
      DO 110 J = 1, MPLUSN
         ILABAD = .FALSE.
         TEMP2 = ( ABS1( ALPHA( J )-AI( J, J ) ) /
     $           MAX( SMLNUM, ABS1( ALPHA( J ) ), ABS1( AI( J, J ) ) )+
     $           ABS1( BETA( J )-BI( J, J ) ) /
     $           MAX( SMLNUM, ABS1( BETA( J ) ), ABS1( BI( J, J ) ) ) )
     $            / ULP
         IF( J.LT.MPLUSN ) THEN
            IF( AI( J+1, J ).NE.ZERO ) THEN
               ILABAD = .TRUE.
               RESULT( 5 ) = ULPINV
            END IF
         END IF
         IF( J.GT.1 ) THEN
            IF( AI( J, J-1 ).NE.ZERO ) THEN
               ILABAD = .TRUE.
               RESULT( 5 ) = ULPINV
            END IF
         END IF
         TEMP1 = MAX( TEMP1, TEMP2 )
         IF( ILABAD ) THEN
            WRITE( NOUT, FMT = 9997 )J, MPLUSN, NPTKNT
         END IF
  110 CONTINUE
      RESULT( 6 ) = TEMP1
*
*     Test (7) (if sorting worked)  <--------- need to be checked.
*
      NTEST = 7
      RESULT( 7 ) = ZERO
      IF( LINFO.EQ.MPLUSN+3 )
     $   RESULT( 7 ) = ULPINV
*
*     Test (8): compare the estimated value of DIF and its true value.
*
      NTEST = 8
      RESULT( 8 ) = ZERO
      IF( DIFEST( 2 ).EQ.ZERO ) THEN
         IF( DIFTRU.GT.ABNRM*ULP )
     $      RESULT( 8 ) = ULPINV
      ELSE IF( DIFTRU.EQ.ZERO ) THEN
         IF( DIFEST( 2 ).GT.ABNRM*ULP )
     $      RESULT( 8 ) = ULPINV
      ELSE IF( ( DIFTRU.GT.THRSH2*DIFEST( 2 ) ) .OR.
     $         ( DIFTRU*THRSH2.LT.DIFEST( 2 ) ) ) THEN
         RESULT( 8 ) = MAX( DIFTRU / DIFEST( 2 ), DIFEST( 2 ) / DIFTRU )
      END IF
*
*     Test (9)
*
      NTEST = 9
      RESULT( 9 ) = ZERO
      IF( LINFO.EQ.( MPLUSN+2 ) ) THEN
         IF( DIFTRU.GT.ABNRM*ULP )
     $      RESULT( 9 ) = ULPINV
         IF( ( IFUNC.GT.1 ) .AND. ( DIFEST( 2 ).NE.ZERO ) )
     $      RESULT( 9 ) = ULPINV
         IF( ( IFUNC.EQ.1 ) .AND. ( PL( 1 ).NE.ZERO ) )
     $      RESULT( 9 ) = ULPINV
      END IF
*
*     Test (10): compare the estimated value of PL and it true value.
*
      NTEST = 10
      RESULT( 10 ) = ZERO
      IF( PL( 1 ).EQ.ZERO ) THEN
         IF( PLTRU.GT.ABNRM*ULP )
     $      RESULT( 10 ) = ULPINV
      ELSE IF( PLTRU.EQ.ZERO ) THEN
         IF( PL( 1 ).GT.ABNRM*ULP )
     $      RESULT( 10 ) = ULPINV
      ELSE IF( ( PLTRU.GT.THRESH*PL( 1 ) ) .OR.
     $         ( PLTRU*THRESH.LT.PL( 1 ) ) ) THEN
         RESULT( 10 ) = ULPINV
      END IF
*
      NTESTT = NTESTT + NTEST
*
*     Print out tests which fail.
*
      DO 120 J = 1, NTEST
         IF( RESULT( J ).GE.THRESH ) THEN
*
*           If this is the first test to fail,
*           print a header to the data file.
*
            IF( NERRS.EQ.0 ) THEN
               WRITE( NOUT, FMT = 9996 )'CGX'
*
*              Matrix types
*
               WRITE( NOUT, FMT = 9995 )
*
*              Tests performed
*
               WRITE( NOUT, FMT = 9993 )'unitary', '''', 'transpose',
     $            ( '''', I = 1, 4 )
*
            END IF
            NERRS = NERRS + 1
            IF( RESULT( J ).LT.10000.0 ) THEN
               WRITE( NOUT, FMT = 9990 )NPTKNT, MPLUSN, J, RESULT( J )
            ELSE
               WRITE( NOUT, FMT = 9989 )NPTKNT, MPLUSN, J, RESULT( J )
            END IF
         END IF
*
  120 CONTINUE
*
  130 CONTINUE
      GO TO 80
  140 CONTINUE
*
  150 CONTINUE
*
*     Summary
*
      CALL ALASVM( 'CGX', NOUT, NERRS, NTESTT, 0 )
*
      WORK( 1 ) = MAXWRK
*
      RETURN
*
 9999 FORMAT( ' CDRGSX: ', A, ' returned INFO=', I6, '.', / 9X, 'N=',
     $      I6, ', JTYPE=', I6, ')' )
*
 9998 FORMAT( ' CDRGSX: ', A, ' returned INFO=', I6, '.', / 9X, 'N=',
     $      I6, ', Input Example #', I2, ')' )
*
 9997 FORMAT( ' CDRGSX: S not in Schur form at eigenvalue ', I6, '.',
     $      / 9X, 'N=', I6, ', JTYPE=', I6, ')' )
*
 9996 FORMAT( / 1X, A3, ' -- Complex Expert Generalized Schur form',
     $      ' problem driver' )
*
 9995 FORMAT( 'Input Example' )
*
 9994 FORMAT( ' Matrix types: ', /
     $      '  1:  A is a block diagonal matrix of Jordan blocks ',
     $      'and B is the identity ', / '      matrix, ',
     $      / '  2:  A and B are upper triangular matrices, ',
     $      / '  3:  A and B are as type 2, but each second diagonal ',
     $      'block in A_11 and ', /
     $      '      each third diaongal block in A_22 are 2x2 blocks,',
     $      / '  4:  A and B are block diagonal matrices, ',
     $      / '  5:  (A,B) has potentially close or common ',
     $      'eigenvalues.', / )
*
 9993 FORMAT( / ' Tests performed:  (S is Schur, T is triangular, ',
     $      'Q and Z are ', A, ',', / 19X,
     $      ' a is alpha, b is beta, and ', A, ' means ', A, '.)',
     $      / '  1 = | A - Q S Z', A,
     $      ' | / ( |A| n ulp )      2 = | B - Q T Z', A,
     $      ' | / ( |B| n ulp )', / '  3 = | I - QQ', A,
     $      ' | / ( n ulp )             4 = | I - ZZ', A,
     $      ' | / ( n ulp )', / '  5 = 1/ULP  if A is not in ',
     $      'Schur form S', / '  6 = difference between (alpha,beta)',
     $      ' and diagonals of (S,T)', /
     $      '  7 = 1/ULP  if SDIM is not the correct number of ',
     $      'selected eigenvalues', /
     $      '  8 = 1/ULP  if DIFEST/DIFTRU > 10*THRESH or ',
     $      'DIFTRU/DIFEST > 10*THRESH',
     $      / '  9 = 1/ULP  if DIFEST <> 0 or DIFTRU > ULP*norm(A,B) ',
     $      'when reordering fails', /
     $      ' 10 = 1/ULP  if PLEST/PLTRU > THRESH or ',
     $      'PLTRU/PLEST > THRESH', /
     $      '    ( Test 10 is only for input examples )', / )
 9992 FORMAT( ' Matrix order=', I2, ', type=', I2, ', a=', E10.4,
     $      ', order(A_11)=', I2, ', result ', I2, ' is ', 0P, F8.2 )
 9991 FORMAT( ' Matrix order=', I2, ', type=', I2, ', a=', E10.4,
     $      ', order(A_11)=', I2, ', result ', I2, ' is ', 0P, E10.4 )
 9990 FORMAT( ' Input example #', I2, ', matrix order=', I4, ',',
     $      ' result ', I2, ' is', 0P, F8.2 )
 9989 FORMAT( ' Input example #', I2, ', matrix order=', I4, ',',
     $      ' result ', I2, ' is', 1P, E10.3 )
*
*     End of CDRGSX
*
      END