SUBROUTINE ZTFTTP( TRANSR, UPLO, N, ARF, AP, INFO )
*
*  -- LAPACK routine (version 3.2.1)                                    --
*
*  -- Contributed by Fred Gustavson of the IBM Watson Research Center --
*  -- April 2009                                                      --
*
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
*     .. Scalar Arguments ..
      CHARACTER          TRANSR, UPLO
      INTEGER            INFO, N
*     ..
*     .. Array Arguments ..
      COMPLEX*16         AP( 0: * ), ARF( 0: * )
*     ..
*
*  Purpose
*  =======
*
*  ZTFTTP copies a triangular matrix A from rectangular full packed
*  format (TF) to standard packed format (TP).
*
*  Arguments
*  =========
*
*  TRANSR   (input) CHARACTER
*          = 'N':  ARF is in Normal format;
*          = 'C':  ARF is in Conjugate-transpose format;
*
*  UPLO    (input) CHARACTER
*          = 'U':  A is upper triangular;
*          = 'L':  A is lower triangular.
*
*  N       (input) INTEGER
*          The order of the matrix A. N >= 0.
*
*  ARF     (input) COMPLEX*16 array, dimension ( N*(N+1)/2 ),
*          On entry, the upper or lower triangular matrix A stored in
*          RFP format. For a further discussion see Notes below.
*
*  AP      (output) COMPLEX*16 array, dimension ( N*(N+1)/2 ),
*          On exit, the upper or lower triangular matrix A, packed
*          columnwise in a linear array. The j-th column of A is stored
*          in the array AP as follows:
*          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
*          if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
*
*  INFO    (output) INTEGER
*          = 0:  successful exit
*          < 0:  if INFO = -i, the i-th argument had an illegal value
*
*  Further Details
*  ===============
*
*  We first consider Standard Packed Format when N is even.
*  We give an example where N = 6.
*
*      AP is Upper             AP is Lower
*
*   00 01 02 03 04 05       00
*      11 12 13 14 15       10 11
*         22 23 24 25       20 21 22
*            33 34 35       30 31 32 33
*               44 45       40 41 42 43 44
*                  55       50 51 52 53 54 55
*
*
*  Let TRANSR = 'N'. RFP holds AP as follows:
*  For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last
*  three columns of AP upper. The lower triangle A(4:6,0:2) consists of
*  conjugate-transpose of the first three columns of AP upper.
*  For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first
*  three columns of AP lower. The upper triangle A(0:2,0:2) consists of
*  conjugate-transpose of the last three columns of AP lower.
*  To denote conjugate we place -- above the element. This covers the
*  case N even and TRANSR = 'N'.
*
*         RFP A                   RFP A
*
*                                -- -- --
*        03 04 05                33 43 53
*                                   -- --
*        13 14 15                00 44 54
*                                      --
*        23 24 25                10 11 55
*
*        33 34 35                20 21 22
*        --
*        00 44 45                30 31 32
*        -- --
*        01 11 55                40 41 42
*        -- -- --
*        02 12 22                50 51 52
*
*  Now let TRANSR = 'C'. RFP A in both UPLO cases is just the conjugate-
*  transpose of RFP A above. One therefore gets:
*
*
*           RFP A                   RFP A
*
*     -- -- -- --                -- -- -- -- -- --
*     03 13 23 33 00 01 02    33 00 10 20 30 40 50
*     -- -- -- -- --                -- -- -- -- --
*     04 14 24 34 44 11 12    43 44 11 21 31 41 51
*     -- -- -- -- -- --                -- -- -- --
*     05 15 25 35 45 55 22    53 54 55 22 32 42 52
*
*
*  We next consider Standard Packed Format when N is odd.
*  We give an example where N = 5.
*
*     AP is Upper                 AP is Lower
*
*   00 01 02 03 04              00
*      11 12 13 14              10 11
*         22 23 24              20 21 22
*            33 34              30 31 32 33
*               44              40 41 42 43 44
*
*
*  Let TRANSR = 'N'. RFP holds AP as follows:
*  For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last
*  three columns of AP upper. The lower triangle A(3:4,0:1) consists of
*  conjugate-transpose of the first two   columns of AP upper.
*  For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first
*  three columns of AP lower. The upper triangle A(0:1,1:2) consists of
*  conjugate-transpose of the last two   columns of AP lower.
*  To denote conjugate we place -- above the element. This covers the
*  case N odd  and TRANSR = 'N'.
*
*         RFP A                   RFP A
*
*                                   -- --
*        02 03 04                00 33 43
*                                      --
*        12 13 14                10 11 44
*
*        22 23 24                20 21 22
*        --
*        00 33 34                30 31 32
*        -- --
*        01 11 44                40 41 42
*
*  Now let TRANSR = 'C'. RFP A in both UPLO cases is just the conjugate-
*  transpose of RFP A above. One therefore gets:
*
*
*           RFP A                   RFP A
*
*     -- -- --                   -- -- -- -- -- --
*     02 12 22 00 01             00 10 20 30 40 50
*     -- -- -- --                   -- -- -- -- --
*     03 13 23 33 11             33 11 21 31 41 51
*     -- -- -- -- --                   -- -- -- --
*     04 14 24 34 44             43 44 22 32 42 52
*
*  =====================================================================
*
*     .. Parameters ..
*     ..
*     .. Local Scalars ..
      LOGICAL            LOWER, NISODD, NORMALTRANSR
      INTEGER            N1, N2, K, NT
      INTEGER            I, J, IJ
      INTEGER            IJP, JP, LDA, JS
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      EXTERNAL           LSAME
*     ..
*     .. External Subroutines ..
      EXTERNAL           XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          DCONJG
*     ..
*     .. Intrinsic Functions ..
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters.
*
      INFO = 0
      NORMALTRANSR = LSAME( TRANSR, 'N' )
      LOWER = LSAME( UPLO, 'L' )
      IF( .NOT.NORMALTRANSR .AND. .NOT.LSAME( TRANSR, 'C' ) ) THEN
         INFO = -1
      ELSE IF( .NOT.LOWER .AND. .NOT.LSAME( UPLO, 'U' ) ) THEN
         INFO = -2
      ELSE IF( N.LT.0 ) THEN
         INFO = -3
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'ZTFTTP', -INFO )
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( N.EQ.0 )
     +   RETURN
*
      IF( N.EQ.1 ) THEN
         IF( NORMALTRANSR ) THEN
            AP( 0 ) = ARF( 0 )
         ELSE
            AP( 0 ) = DCONJG( ARF( 0 ) )
         END IF
         RETURN
      END IF
*
*     Size of array ARF(0:NT-1)
*
      NT = N*( N+1 ) / 2
*
*     Set N1 and N2 depending on LOWER
*
      IF( LOWER ) THEN
         N2 = N / 2
         N1 = N - N2
      ELSE
         N1 = N / 2
         N2 = N - N1
      END IF
*
*     If N is odd, set NISODD = .TRUE.
*     If N is even, set K = N/2 and NISODD = .FALSE.
*
*     set lda of ARF^C; ARF^C is (0:(N+1)/2-1,0:N-noe)
*     where noe = 0 if n is even, noe = 1 if n is odd
*
      IF( MOD( N, 2 ).EQ.0 ) THEN
         K = N / 2
         NISODD = .FALSE.
         LDA = N + 1
      ELSE
         NISODD = .TRUE.
         LDA = N
      END IF
*
*     ARF^C has lda rows and n+1-noe cols
*
      IF( .NOT.NORMALTRANSR )
     +   LDA = ( N+1 ) / 2
*
*     start execution: there are eight cases
*
      IF( NISODD ) THEN
*
*        N is odd
*
         IF( NORMALTRANSR ) THEN
*
*           N is odd and TRANSR = 'N'
*
            IF( LOWER ) THEN
*
*             SRPA for LOWER, NORMAL and N is odd ( a(0:n-1,0:n1-1) )
*             T1 -> a(0,0), T2 -> a(0,1), S -> a(n1,0)
*             T1 -> a(0), T2 -> a(n), S -> a(n1); lda = n
*
               IJP = 0
               JP = 0
               DO J = 0, N2
                  DO I = J, N - 1
                     IJ = I + JP
                     AP( IJP ) = ARF( IJ )
                     IJP = IJP + 1
                  END DO
                  JP = JP + LDA
               END DO
               DO I = 0, N2 - 1
                  DO J = 1 + I, N2
                     IJ = I + J*LDA
                     AP( IJP ) = DCONJG( ARF( IJ ) )
                     IJP = IJP + 1
                  END DO
               END DO
*
            ELSE
*
*             SRPA for UPPER, NORMAL and N is odd ( a(0:n-1,0:n2-1)
*             T1 -> a(n1+1,0), T2 -> a(n1,0), S -> a(0,0)
*             T1 -> a(n2), T2 -> a(n1), S -> a(0)
*
               IJP = 0
               DO J = 0, N1 - 1
                  IJ = N2 + J
                  DO I = 0, J
                     AP( IJP ) = DCONJG( ARF( IJ ) )
                     IJP = IJP + 1
                     IJ = IJ + LDA
                  END DO
               END DO
               JS = 0
               DO J = N1, N - 1
                  IJ = JS
                  DO IJ = JS, JS + J
                     AP( IJP ) = ARF( IJ )
                     IJP = IJP + 1
                  END DO
                  JS = JS + LDA
               END DO
*
            END IF
*
         ELSE
*
*           N is odd and TRANSR = 'C'
*
            IF( LOWER ) THEN
*
*              SRPA for LOWER, TRANSPOSE and N is odd
*              T1 -> A(0,0) , T2 -> A(1,0) , S -> A(0,n1)
*              T1 -> a(0+0) , T2 -> a(1+0) , S -> a(0+n1*n1); lda=n1
*
               IJP = 0
               DO I = 0, N2
                  DO IJ = I*( LDA+1 ), N*LDA - 1, LDA
                     AP( IJP ) = DCONJG( ARF( IJ ) )
                     IJP = IJP + 1
                  END DO
               END DO
               JS = 1
               DO J = 0, N2 - 1
                  DO IJ = JS, JS + N2 - J - 1
                     AP( IJP ) = ARF( IJ )
                     IJP = IJP + 1
                  END DO
                  JS = JS + LDA + 1
               END DO
*
            ELSE
*
*              SRPA for UPPER, TRANSPOSE and N is odd
*              T1 -> A(0,n1+1), T2 -> A(0,n1), S -> A(0,0)
*              T1 -> a(n2*n2), T2 -> a(n1*n2), S -> a(0); lda = n2
*
               IJP = 0
               JS = N2*LDA
               DO J = 0, N1 - 1
                  DO IJ = JS, JS + J
                     AP( IJP ) = ARF( IJ )
                     IJP = IJP + 1
                  END DO
                  JS = JS + LDA
               END DO
               DO I = 0, N1
                  DO IJ = I, I + ( N1+I )*LDA, LDA
                     AP( IJP ) = DCONJG( ARF( IJ ) )
                     IJP = IJP + 1
                  END DO
               END DO
*
            END IF
*
         END IF
*
      ELSE
*
*        N is even
*
         IF( NORMALTRANSR ) THEN
*
*           N is even and TRANSR = 'N'
*
            IF( LOWER ) THEN
*
*              SRPA for LOWER, NORMAL, and N is even ( a(0:n,0:k-1) )
*              T1 -> a(1,0), T2 -> a(0,0), S -> a(k+1,0)
*              T1 -> a(1), T2 -> a(0), S -> a(k+1)
*
               IJP = 0
               JP = 0
               DO J = 0, K - 1
                  DO I = J, N - 1
                     IJ = 1 + I + JP
                     AP( IJP ) = ARF( IJ )
                     IJP = IJP + 1
                  END DO
                  JP = JP + LDA
               END DO
               DO I = 0, K - 1
                  DO J = I, K - 1
                     IJ = I + J*LDA
                     AP( IJP ) = DCONJG( ARF( IJ ) )
                     IJP = IJP + 1
                  END DO
               END DO
*
            ELSE
*
*              SRPA for UPPER, NORMAL, and N is even ( a(0:n,0:k-1) )
*              T1 -> a(k+1,0) ,  T2 -> a(k,0),   S -> a(0,0)
*              T1 -> a(k+1), T2 -> a(k), S -> a(0)
*
               IJP = 0
               DO J = 0, K - 1
                  IJ = K + 1 + J
                  DO I = 0, J
                     AP( IJP ) = DCONJG( ARF( IJ ) )
                     IJP = IJP + 1
                     IJ = IJ + LDA
                  END DO
               END DO
               JS = 0
               DO J = K, N - 1
                  IJ = JS
                  DO IJ = JS, JS + J
                     AP( IJP ) = ARF( IJ )
                     IJP = IJP + 1
                  END DO
                  JS = JS + LDA
               END DO
*
            END IF
*
         ELSE
*
*           N is even and TRANSR = 'C'
*
            IF( LOWER ) THEN
*
*              SRPA for LOWER, TRANSPOSE and N is even (see paper)
*              T1 -> B(0,1), T2 -> B(0,0), S -> B(0,k+1)
*              T1 -> a(0+k), T2 -> a(0+0), S -> a(0+k*(k+1)); lda=k
*
               IJP = 0
               DO I = 0, K - 1
                  DO IJ = I + ( I+1 )*LDA, ( N+1 )*LDA - 1, LDA
                     AP( IJP ) = DCONJG( ARF( IJ ) )
                     IJP = IJP + 1
                  END DO
               END DO
               JS = 0
               DO J = 0, K - 1
                  DO IJ = JS, JS + K - J - 1
                     AP( IJP ) = ARF( IJ )
                     IJP = IJP + 1
                  END DO
                  JS = JS + LDA + 1
               END DO
*
            ELSE
*
*              SRPA for UPPER, TRANSPOSE and N is even (see paper)
*              T1 -> B(0,k+1),     T2 -> B(0,k),   S -> B(0,0)
*              T1 -> a(0+k*(k+1)), T2 -> a(0+k*k), S -> a(0+0)); lda=k
*
               IJP = 0
               JS = ( K+1 )*LDA
               DO J = 0, K - 1
                  DO IJ = JS, JS + J
                     AP( IJP ) = ARF( IJ )
                     IJP = IJP + 1
                  END DO
                  JS = JS + LDA
               END DO
               DO I = 0, K - 1
                  DO IJ = I, I + ( K+I )*LDA, LDA
                     AP( IJP ) = DCONJG( ARF( IJ ) )
                     IJP = IJP + 1
                  END DO
               END DO
*
            END IF
*
         END IF
*
      END IF
*
      RETURN
*
*     End of ZTFTTP
*
      END