SUBROUTINE ZSYEQUB( UPLO, N, A, LDA, S, SCOND, AMAX, WORK, INFO ) * * -- LAPACK routine (version 3.2) -- * -- Contributed by James Demmel, Deaglan Halligan, Yozo Hida and -- * -- Jason Riedy of Univ. of California Berkeley. -- * -- November 2008 -- * * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley and NAG Ltd. -- * IMPLICIT NONE * .. * .. Scalar Arguments .. INTEGER INFO, LDA, N DOUBLE PRECISION AMAX, SCOND CHARACTER UPLO * .. * .. Array Arguments .. COMPLEX*16 A( LDA, * ), WORK( * ) DOUBLE PRECISION S( * ) * .. * * Purpose * ======= * * ZSYEQUB computes row and column scalings intended to equilibrate a * symmetric matrix A and reduce its condition number * (with respect to the two-norm). S contains the scale factors, * S(i) = 1/sqrt(A(i,i)), chosen so that the scaled matrix B with * elements B(i,j) = S(i)*A(i,j)*S(j) has ones on the diagonal. This * choice of S puts the condition number of B within a factor N of the * smallest possible condition number over all possible diagonal * scalings. * * Arguments * ========= * * N (input) INTEGER * The order of the matrix A. N >= 0. * * A (input) COMPLEX*16 array, dimension (LDA,N) * The N-by-N symmetric matrix whose scaling * factors are to be computed. Only the diagonal elements of A * are referenced. * * LDA (input) INTEGER * The leading dimension of the array A. LDA >= max(1,N). * * S (output) DOUBLE PRECISION array, dimension (N) * If INFO = 0, S contains the scale factors for A. * * SCOND (output) DOUBLE PRECISION * If INFO = 0, S contains the ratio of the smallest S(i) to * the largest S(i). If SCOND >= 0.1 and AMAX is neither too * large nor too small, it is not worth scaling by S. * * AMAX (output) DOUBLE PRECISION * Absolute value of largest matrix element. If AMAX is very * close to overflow or very close to underflow, the matrix * should be scaled. * INFO (output) INTEGER * = 0: successful exit * < 0: if INFO = -i, the i-th argument had an illegal value * > 0: if INFO = i, the i-th diagonal element is nonpositive. * * Further Details * ======= ======= * * Reference: Livne, O.E. and Golub, G.H., "Scaling by Binormalization", * Numerical Algorithms, vol. 35, no. 1, pp. 97-120, January 2004. * DOI 10.1023/B:NUMA.0000016606.32820.69 * Tech report version: http://ruready.utah.edu/archive/papers/bin.pdf * * ===================================================================== * * .. Parameters .. DOUBLE PRECISION ONE, ZERO PARAMETER ( ONE = 1.0D0, ZERO = 0.0D0 ) INTEGER MAX_ITER PARAMETER ( MAX_ITER = 100 ) * .. * .. Local Scalars .. INTEGER I, J, ITER DOUBLE PRECISION AVG, STD, TOL, C0, C1, C2, T, U, SI, D, BASE, \$ SMIN, SMAX, SMLNUM, BIGNUM, SCALE, SUMSQ LOGICAL UP COMPLEX*16 ZDUM * .. * .. External Functions .. DOUBLE PRECISION DLAMCH LOGICAL LSAME * .. * .. External Subroutines .. EXTERNAL ZLASSQ * .. * .. Statement Functions .. DOUBLE PRECISION CABS1 * .. * Statement Function Definitions CABS1( ZDUM ) = ABS( DBLE( ZDUM ) ) + ABS( DIMAG( ZDUM ) ) * .. * .. Executable Statements .. * * Test the input parameters. * INFO = 0 IF ( .NOT. ( LSAME( UPLO, 'U' ) .OR. LSAME( UPLO, 'L' ) ) ) THEN INFO = -1 ELSE IF ( N .LT. 0 ) THEN INFO = -2 ELSE IF ( LDA .LT. MAX( 1, N ) ) THEN INFO = -4 END IF IF ( INFO .NE. 0 ) THEN CALL XERBLA( 'ZSYEQUB', -INFO ) RETURN END IF UP = LSAME( UPLO, 'U' ) AMAX = ZERO * * Quick return if possible. * IF ( N .EQ. 0 ) THEN SCOND = ONE RETURN END IF DO I = 1, N S( I ) = ZERO END DO AMAX = ZERO IF ( UP ) THEN DO J = 1, N DO I = 1, J-1 S( I ) = MAX( S( I ), CABS1( A( I, J ) ) ) S( J ) = MAX( S( J ), CABS1( A( I, J ) ) ) AMAX = MAX( AMAX, CABS1( A( I, J ) ) ) END DO S( J ) = MAX( S( J ), CABS1( A( J, J) ) ) AMAX = MAX( AMAX, CABS1( A( J, J ) ) ) END DO ELSE DO J = 1, N S( J ) = MAX( S( J ), CABS1( A( J, J ) ) ) AMAX = MAX( AMAX, CABS1( A( J, J ) ) ) DO I = J+1, N S( I ) = MAX( S( I ), CABS1( A( I, J ) ) ) S( J ) = MAX( S( J ), CABS1 (A( I, J ) ) ) AMAX = MAX( AMAX, CABS1( A( I, J ) ) ) END DO END DO END IF DO J = 1, N S( J ) = 1.0D+0 / S( J ) END DO TOL = ONE / SQRT( 2.0D0 * N ) DO ITER = 1, MAX_ITER SCALE = 0.0D+0 SUMSQ = 0.0D+0 * beta = |A|s DO I = 1, N WORK( I ) = ZERO END DO IF ( UP ) THEN DO J = 1, N DO I = 1, J-1 T = CABS1( A( I, J ) ) WORK( I ) = WORK( I ) + CABS1( A( I, J ) ) * S( J ) WORK( J ) = WORK( J ) + CABS1( A( I, J ) ) * S( I ) END DO WORK( J ) = WORK( J ) + CABS1( A( J, J ) ) * S( J ) END DO ELSE DO J = 1, N WORK( J ) = WORK( J ) + CABS1( A( J, J ) ) * S( J ) DO I = J+1, N T = CABS1( A( I, J ) ) WORK( I ) = WORK( I ) + CABS1( A( I, J ) ) * S( J ) WORK( J ) = WORK( J ) + CABS1( A( I, J ) ) * S( I ) END DO END DO END IF * avg = s^T beta / n AVG = 0.0D+0 DO I = 1, N AVG = AVG + S( I )*WORK( I ) END DO AVG = AVG / N STD = 0.0D+0 DO I = N+1, 2*N WORK( I ) = S( I-N ) * WORK( I-N ) - AVG END DO CALL ZLASSQ( N, WORK( N+1 ), 1, SCALE, SUMSQ ) STD = SCALE * SQRT( SUMSQ / N ) IF ( STD .LT. TOL * AVG ) GOTO 999 DO I = 1, N T = CABS1( A( I, I ) ) SI = S( I ) C2 = ( N-1 ) * T C1 = ( N-2 ) * ( WORK( I ) - T*SI ) C0 = -(T*SI)*SI + 2*WORK( I )*SI - N*AVG D = C1*C1 - 4*C0*C2 IF ( D .LE. 0 ) THEN INFO = -1 RETURN END IF SI = -2*C0 / ( C1 + SQRT( D ) ) D = SI - S( I ) U = ZERO IF ( UP ) THEN DO J = 1, I T = CABS1( A( J, I ) ) U = U + S( J )*T WORK( J ) = WORK( J ) + D*T END DO DO J = I+1,N T = CABS1( A( I, J ) ) U = U + S( J )*T WORK( J ) = WORK( J ) + D*T END DO ELSE DO J = 1, I T = CABS1( A( I, J ) ) U = U + S( J )*T WORK( J ) = WORK( J ) + D*T END DO DO J = I+1,N T = CABS1( A( J, I ) ) U = U + S( J )*T WORK( J ) = WORK( J ) + D*T END DO END IF AVG = AVG + ( U + WORK( I ) ) * D / N S( I ) = SI END DO END DO 999 CONTINUE SMLNUM = DLAMCH( 'SAFEMIN' ) BIGNUM = ONE / SMLNUM SMIN = BIGNUM SMAX = ZERO T = ONE / SQRT( AVG ) BASE = DLAMCH( 'B' ) U = ONE / LOG( BASE ) DO I = 1, N S( I ) = BASE ** INT( U * LOG( S( I ) * T ) ) SMIN = MIN( SMIN, S( I ) ) SMAX = MAX( SMAX, S( I ) ) END DO SCOND = MAX( SMIN, SMLNUM ) / MIN( SMAX, BIGNUM ) * END