SUBROUTINE ZGETF2( M, N, A, LDA, IPIV, INFO ) * * -- LAPACK routine (version 3.2) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * November 2006 * * .. Scalar Arguments .. INTEGER INFO, LDA, M, N * .. * .. Array Arguments .. INTEGER IPIV( * ) COMPLEX*16 A( LDA, * ) * .. * * Purpose * ======= * * ZGETF2 computes an LU factorization of a general m-by-n matrix A * using partial pivoting with row interchanges. * * The factorization has the form * A = P * L * U * where P is a permutation matrix, L is lower triangular with unit * diagonal elements (lower trapezoidal if m > n), and U is upper * triangular (upper trapezoidal if m < n). * * This is the right-looking Level 2 BLAS version of the algorithm. * * Arguments * ========= * * M (input) INTEGER * The number of rows of the matrix A. M >= 0. * * N (input) INTEGER * The number of columns of the matrix A. N >= 0. * * A (input/output) COMPLEX*16 array, dimension (LDA,N) * On entry, the m by n matrix to be factored. * On exit, the factors L and U from the factorization * A = P*L*U; the unit diagonal elements of L are not stored. * * LDA (input) INTEGER * The leading dimension of the array A. LDA >= max(1,M). * * IPIV (output) INTEGER array, dimension (min(M,N)) * The pivot indices; for 1 <= i <= min(M,N), row i of the * matrix was interchanged with row IPIV(i). * * INFO (output) INTEGER * = 0: successful exit * < 0: if INFO = -k, the k-th argument had an illegal value * > 0: if INFO = k, U(k,k) is exactly zero. The factorization * has been completed, but the factor U is exactly * singular, and division by zero will occur if it is used * to solve a system of equations. * * ===================================================================== * * .. Parameters .. COMPLEX*16 ONE, ZERO PARAMETER ( ONE = ( 1.0D+0, 0.0D+0 ), \$ ZERO = ( 0.0D+0, 0.0D+0 ) ) * .. * .. Local Scalars .. DOUBLE PRECISION SFMIN INTEGER I, J, JP * .. * .. External Functions .. DOUBLE PRECISION DLAMCH INTEGER IZAMAX EXTERNAL DLAMCH, IZAMAX * .. * .. External Subroutines .. EXTERNAL XERBLA, ZGERU, ZSCAL, ZSWAP * .. * .. Intrinsic Functions .. INTRINSIC MAX, MIN * .. * .. Executable Statements .. * * Test the input parameters. * INFO = 0 IF( M.LT.0 ) THEN INFO = -1 ELSE IF( N.LT.0 ) THEN INFO = -2 ELSE IF( LDA.LT.MAX( 1, M ) ) THEN INFO = -4 END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'ZGETF2', -INFO ) RETURN END IF * * Quick return if possible * IF( M.EQ.0 .OR. N.EQ.0 ) \$ RETURN * * Compute machine safe minimum * SFMIN = DLAMCH('S') * DO 10 J = 1, MIN( M, N ) * * Find pivot and test for singularity. * JP = J - 1 + IZAMAX( M-J+1, A( J, J ), 1 ) IPIV( J ) = JP IF( A( JP, J ).NE.ZERO ) THEN * * Apply the interchange to columns 1:N. * IF( JP.NE.J ) \$ CALL ZSWAP( N, A( J, 1 ), LDA, A( JP, 1 ), LDA ) * * Compute elements J+1:M of J-th column. * IF( J.LT.M ) THEN IF( ABS(A( J, J )) .GE. SFMIN ) THEN CALL ZSCAL( M-J, ONE / A( J, J ), A( J+1, J ), 1 ) ELSE DO 20 I = 1, M-J A( J+I, J ) = A( J+I, J ) / A( J, J ) 20 CONTINUE END IF END IF * ELSE IF( INFO.EQ.0 ) THEN * INFO = J END IF * IF( J.LT.MIN( M, N ) ) THEN * * Update trailing submatrix. * CALL ZGERU( M-J, N-J, -ONE, A( J+1, J ), 1, A( J, J+1 ), \$ LDA, A( J+1, J+1 ), LDA ) END IF 10 CONTINUE RETURN * * End of ZGETF2 * END