REAL FUNCTION SLANSF( NORM, TRANSR, UPLO, N, A, WORK )
*
* -- LAPACK routine (version 3.2.1) --
*
* -- Contributed by Fred Gustavson of the IBM Watson Research Center --
* -- April 2009 --
*
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
* .. Scalar Arguments ..
CHARACTER NORM, TRANSR, UPLO
INTEGER N
* ..
* .. Array Arguments ..
REAL A( 0: * ), WORK( 0: * )
* ..
*
* Purpose
* =======
*
* SLANSF returns the value of the one norm, or the Frobenius norm, or
* the infinity norm, or the element of largest absolute value of a
* real symmetric matrix A in RFP format.
*
* Description
* ===========
*
* SLANSF returns the value
*
* SLANSF = ( max(abs(A(i,j))), NORM = 'M' or 'm'
* (
* ( norm1(A), NORM = '1', 'O' or 'o'
* (
* ( normI(A), NORM = 'I' or 'i'
* (
* ( normF(A), NORM = 'F', 'f', 'E' or 'e'
*
* where norm1 denotes the one norm of a matrix (maximum column sum),
* normI denotes the infinity norm of a matrix (maximum row sum) and
* normF denotes the Frobenius norm of a matrix (square root of sum of
* squares). Note that max(abs(A(i,j))) is not a matrix norm.
*
* Arguments
* =========
*
* NORM (input) CHARACTER
* Specifies the value to be returned in SLANSF as described
* above.
*
* TRANSR (input) CHARACTER
* Specifies whether the RFP format of A is normal or
* transposed format.
* = 'N': RFP format is Normal;
* = 'T': RFP format is Transpose.
*
* UPLO (input) CHARACTER
* On entry, UPLO specifies whether the RFP matrix A came from
* an upper or lower triangular matrix as follows:
* = 'U': RFP A came from an upper triangular matrix;
* = 'L': RFP A came from a lower triangular matrix.
*
* N (input) INTEGER
* The order of the matrix A. N >= 0. When N = 0, SLANSF is
* set to zero.
*
* A (input) REAL array, dimension ( N*(N+1)/2 );
* On entry, the upper (if UPLO = 'U') or lower (if UPLO = 'L')
* part of the symmetric matrix A stored in RFP format. See the
* "Notes" below for more details.
* Unchanged on exit.
*
* WORK (workspace) REAL array, dimension (MAX(1,LWORK)),
* where LWORK >= N when NORM = 'I' or '1' or 'O'; otherwise,
* WORK is not referenced.
*
* Further Details
* ===============
*
* We first consider Rectangular Full Packed (RFP) Format when N is
* even. We give an example where N = 6.
*
* AP is Upper AP is Lower
*
* 00 01 02 03 04 05 00
* 11 12 13 14 15 10 11
* 22 23 24 25 20 21 22
* 33 34 35 30 31 32 33
* 44 45 40 41 42 43 44
* 55 50 51 52 53 54 55
*
*
* Let TRANSR = 'N'. RFP holds AP as follows:
* For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last
* three columns of AP upper. The lower triangle A(4:6,0:2) consists of
* the transpose of the first three columns of AP upper.
* For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first
* three columns of AP lower. The upper triangle A(0:2,0:2) consists of
* the transpose of the last three columns of AP lower.
* This covers the case N even and TRANSR = 'N'.
*
* RFP A RFP A
*
* 03 04 05 33 43 53
* 13 14 15 00 44 54
* 23 24 25 10 11 55
* 33 34 35 20 21 22
* 00 44 45 30 31 32
* 01 11 55 40 41 42
* 02 12 22 50 51 52
*
* Now let TRANSR = 'T'. RFP A in both UPLO cases is just the
* transpose of RFP A above. One therefore gets:
*
*
* RFP A RFP A
*
* 03 13 23 33 00 01 02 33 00 10 20 30 40 50
* 04 14 24 34 44 11 12 43 44 11 21 31 41 51
* 05 15 25 35 45 55 22 53 54 55 22 32 42 52
*
*
* We first consider Rectangular Full Packed (RFP) Format when N is
* odd. We give an example where N = 5.
*
* AP is Upper AP is Lower
*
* 00 01 02 03 04 00
* 11 12 13 14 10 11
* 22 23 24 20 21 22
* 33 34 30 31 32 33
* 44 40 41 42 43 44
*
*
* Let TRANSR = 'N'. RFP holds AP as follows:
* For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last
* three columns of AP upper. The lower triangle A(3:4,0:1) consists of
* the transpose of the first two columns of AP upper.
* For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first
* three columns of AP lower. The upper triangle A(0:1,1:2) consists of
* the transpose of the last two columns of AP lower.
* This covers the case N odd and TRANSR = 'N'.
*
* RFP A RFP A
*
* 02 03 04 00 33 43
* 12 13 14 10 11 44
* 22 23 24 20 21 22
* 00 33 34 30 31 32
* 01 11 44 40 41 42
*
* Now let TRANSR = 'T'. RFP A in both UPLO cases is just the
* transpose of RFP A above. One therefore gets:
*
* RFP A RFP A
*
* 02 12 22 00 01 00 10 20 30 40 50
* 03 13 23 33 11 33 11 21 31 41 51
* 04 14 24 34 44 43 44 22 32 42 52
*
* Reference
* =========
*
* =====================================================================
*
* ..
* .. Parameters ..
REAL ONE, ZERO
PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 )
* ..
* .. Local Scalars ..
INTEGER I, J, IFM, ILU, NOE, N1, K, L, LDA
REAL SCALE, S, VALUE, AA
* ..
* .. External Functions ..
LOGICAL LSAME
INTEGER ISAMAX
EXTERNAL LSAME, ISAMAX
* ..
* .. External Subroutines ..
EXTERNAL SLASSQ
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, MAX, SQRT
* ..
* .. Executable Statements ..
*
IF( N.EQ.0 ) THEN
SLANSF = ZERO
RETURN
END IF
*
* set noe = 1 if n is odd. if n is even set noe=0
*
NOE = 1
IF( MOD( N, 2 ).EQ.0 )
+ NOE = 0
*
* set ifm = 0 when form='T or 't' and 1 otherwise
*
IFM = 1
IF( LSAME( TRANSR, 'T' ) )
+ IFM = 0
*
* set ilu = 0 when uplo='U or 'u' and 1 otherwise
*
ILU = 1
IF( LSAME( UPLO, 'U' ) )
+ ILU = 0
*
* set lda = (n+1)/2 when ifm = 0
* set lda = n when ifm = 1 and noe = 1
* set lda = n+1 when ifm = 1 and noe = 0
*
IF( IFM.EQ.1 ) THEN
IF( NOE.EQ.1 ) THEN
LDA = N
ELSE
* noe=0
LDA = N + 1
END IF
ELSE
* ifm=0
LDA = ( N+1 ) / 2
END IF
*
IF( LSAME( NORM, 'M' ) ) THEN
*
* Find max(abs(A(i,j))).
*
K = ( N+1 ) / 2
VALUE = ZERO
IF( NOE.EQ.1 ) THEN
* n is odd
IF( IFM.EQ.1 ) THEN
* A is n by k
DO J = 0, K - 1
DO I = 0, N - 1
VALUE = MAX( VALUE, ABS( A( I+J*LDA ) ) )
END DO
END DO
ELSE
* xpose case; A is k by n
DO J = 0, N - 1
DO I = 0, K - 1
VALUE = MAX( VALUE, ABS( A( I+J*LDA ) ) )
END DO
END DO
END IF
ELSE
* n is even
IF( IFM.EQ.1 ) THEN
* A is n+1 by k
DO J = 0, K - 1
DO I = 0, N
VALUE = MAX( VALUE, ABS( A( I+J*LDA ) ) )
END DO
END DO
ELSE
* xpose case; A is k by n+1
DO J = 0, N
DO I = 0, K - 1
VALUE = MAX( VALUE, ABS( A( I+J*LDA ) ) )
END DO
END DO
END IF
END IF
ELSE IF( ( LSAME( NORM, 'I' ) ) .OR. ( LSAME( NORM, 'O' ) ) .OR.
+ ( NORM.EQ.'1' ) ) THEN
*
* Find normI(A) ( = norm1(A), since A is symmetric).
*
IF( IFM.EQ.1 ) THEN
K = N / 2
IF( NOE.EQ.1 ) THEN
* n is odd
IF( ILU.EQ.0 ) THEN
DO I = 0, K - 1
WORK( I ) = ZERO
END DO
DO J = 0, K
S = ZERO
DO I = 0, K + J - 1
AA = ABS( A( I+J*LDA ) )
* -> A(i,j+k)
S = S + AA
WORK( I ) = WORK( I ) + AA
END DO
AA = ABS( A( I+J*LDA ) )
* -> A(j+k,j+k)
WORK( J+K ) = S + AA
IF( I.EQ.K+K )
+ GO TO 10
I = I + 1
AA = ABS( A( I+J*LDA ) )
* -> A(j,j)
WORK( J ) = WORK( J ) + AA
S = ZERO
DO L = J + 1, K - 1
I = I + 1
AA = ABS( A( I+J*LDA ) )
* -> A(l,j)
S = S + AA
WORK( L ) = WORK( L ) + AA
END DO
WORK( J ) = WORK( J ) + S
END DO
10 CONTINUE
I = ISAMAX( N, WORK, 1 )
VALUE = WORK( I-1 )
ELSE
* ilu = 1
K = K + 1
* k=(n+1)/2 for n odd and ilu=1
DO I = K, N - 1
WORK( I ) = ZERO
END DO
DO J = K - 1, 0, -1
S = ZERO
DO I = 0, J - 2
AA = ABS( A( I+J*LDA ) )
* -> A(j+k,i+k)
S = S + AA
WORK( I+K ) = WORK( I+K ) + AA
END DO
IF( J.GT.0 ) THEN
AA = ABS( A( I+J*LDA ) )
* -> A(j+k,j+k)
S = S + AA
WORK( I+K ) = WORK( I+K ) + S
* i=j
I = I + 1
END IF
AA = ABS( A( I+J*LDA ) )
* -> A(j,j)
WORK( J ) = AA
S = ZERO
DO L = J + 1, N - 1
I = I + 1
AA = ABS( A( I+J*LDA ) )
* -> A(l,j)
S = S + AA
WORK( L ) = WORK( L ) + AA
END DO
WORK( J ) = WORK( J ) + S
END DO
I = ISAMAX( N, WORK, 1 )
VALUE = WORK( I-1 )
END IF
ELSE
* n is even
IF( ILU.EQ.0 ) THEN
DO I = 0, K - 1
WORK( I ) = ZERO
END DO
DO J = 0, K - 1
S = ZERO
DO I = 0, K + J - 1
AA = ABS( A( I+J*LDA ) )
* -> A(i,j+k)
S = S + AA
WORK( I ) = WORK( I ) + AA
END DO
AA = ABS( A( I+J*LDA ) )
* -> A(j+k,j+k)
WORK( J+K ) = S + AA
I = I + 1
AA = ABS( A( I+J*LDA ) )
* -> A(j,j)
WORK( J ) = WORK( J ) + AA
S = ZERO
DO L = J + 1, K - 1
I = I + 1
AA = ABS( A( I+J*LDA ) )
* -> A(l,j)
S = S + AA
WORK( L ) = WORK( L ) + AA
END DO
WORK( J ) = WORK( J ) + S
END DO
I = ISAMAX( N, WORK, 1 )
VALUE = WORK( I-1 )
ELSE
* ilu = 1
DO I = K, N - 1
WORK( I ) = ZERO
END DO
DO J = K - 1, 0, -1
S = ZERO
DO I = 0, J - 1
AA = ABS( A( I+J*LDA ) )
* -> A(j+k,i+k)
S = S + AA
WORK( I+K ) = WORK( I+K ) + AA
END DO
AA = ABS( A( I+J*LDA ) )
* -> A(j+k,j+k)
S = S + AA
WORK( I+K ) = WORK( I+K ) + S
* i=j
I = I + 1
AA = ABS( A( I+J*LDA ) )
* -> A(j,j)
WORK( J ) = AA
S = ZERO
DO L = J + 1, N - 1
I = I + 1
AA = ABS( A( I+J*LDA ) )
* -> A(l,j)
S = S + AA
WORK( L ) = WORK( L ) + AA
END DO
WORK( J ) = WORK( J ) + S
END DO
I = ISAMAX( N, WORK, 1 )
VALUE = WORK( I-1 )
END IF
END IF
ELSE
* ifm=0
K = N / 2
IF( NOE.EQ.1 ) THEN
* n is odd
IF( ILU.EQ.0 ) THEN
N1 = K
* n/2
K = K + 1
* k is the row size and lda
DO I = N1, N - 1
WORK( I ) = ZERO
END DO
DO J = 0, N1 - 1
S = ZERO
DO I = 0, K - 1
AA = ABS( A( I+J*LDA ) )
* A(j,n1+i)
WORK( I+N1 ) = WORK( I+N1 ) + AA
S = S + AA
END DO
WORK( J ) = S
END DO
* j=n1=k-1 is special
S = ABS( A( 0+J*LDA ) )
* A(k-1,k-1)
DO I = 1, K - 1
AA = ABS( A( I+J*LDA ) )
* A(k-1,i+n1)
WORK( I+N1 ) = WORK( I+N1 ) + AA
S = S + AA
END DO
WORK( J ) = WORK( J ) + S
DO J = K, N - 1
S = ZERO
DO I = 0, J - K - 1
AA = ABS( A( I+J*LDA ) )
* A(i,j-k)
WORK( I ) = WORK( I ) + AA
S = S + AA
END DO
* i=j-k
AA = ABS( A( I+J*LDA ) )
* A(j-k,j-k)
S = S + AA
WORK( J-K ) = WORK( J-K ) + S
I = I + 1
S = ABS( A( I+J*LDA ) )
* A(j,j)
DO L = J + 1, N - 1
I = I + 1
AA = ABS( A( I+J*LDA ) )
* A(j,l)
WORK( L ) = WORK( L ) + AA
S = S + AA
END DO
WORK( J ) = WORK( J ) + S
END DO
I = ISAMAX( N, WORK, 1 )
VALUE = WORK( I-1 )
ELSE
* ilu=1
K = K + 1
* k=(n+1)/2 for n odd and ilu=1
DO I = K, N - 1
WORK( I ) = ZERO
END DO
DO J = 0, K - 2
* process
S = ZERO
DO I = 0, J - 1
AA = ABS( A( I+J*LDA ) )
* A(j,i)
WORK( I ) = WORK( I ) + AA
S = S + AA
END DO
AA = ABS( A( I+J*LDA ) )
* i=j so process of A(j,j)
S = S + AA
WORK( J ) = S
* is initialised here
I = I + 1
* i=j process A(j+k,j+k)
AA = ABS( A( I+J*LDA ) )
S = AA
DO L = K + J + 1, N - 1
I = I + 1
AA = ABS( A( I+J*LDA ) )
* A(l,k+j)
S = S + AA
WORK( L ) = WORK( L ) + AA
END DO
WORK( K+J ) = WORK( K+J ) + S
END DO
* j=k-1 is special :process col A(k-1,0:k-1)
S = ZERO
DO I = 0, K - 2
AA = ABS( A( I+J*LDA ) )
* A(k,i)
WORK( I ) = WORK( I ) + AA
S = S + AA
END DO
* i=k-1
AA = ABS( A( I+J*LDA ) )
* A(k-1,k-1)
S = S + AA
WORK( I ) = S
* done with col j=k+1
DO J = K, N - 1
* process col j of A = A(j,0:k-1)
S = ZERO
DO I = 0, K - 1
AA = ABS( A( I+J*LDA ) )
* A(j,i)
WORK( I ) = WORK( I ) + AA
S = S + AA
END DO
WORK( J ) = WORK( J ) + S
END DO
I = ISAMAX( N, WORK, 1 )
VALUE = WORK( I-1 )
END IF
ELSE
* n is even
IF( ILU.EQ.0 ) THEN
DO I = K, N - 1
WORK( I ) = ZERO
END DO
DO J = 0, K - 1
S = ZERO
DO I = 0, K - 1
AA = ABS( A( I+J*LDA ) )
* A(j,i+k)
WORK( I+K ) = WORK( I+K ) + AA
S = S + AA
END DO
WORK( J ) = S
END DO
* j=k
AA = ABS( A( 0+J*LDA ) )
* A(k,k)
S = AA
DO I = 1, K - 1
AA = ABS( A( I+J*LDA ) )
* A(k,k+i)
WORK( I+K ) = WORK( I+K ) + AA
S = S + AA
END DO
WORK( J ) = WORK( J ) + S
DO J = K + 1, N - 1
S = ZERO
DO I = 0, J - 2 - K
AA = ABS( A( I+J*LDA ) )
* A(i,j-k-1)
WORK( I ) = WORK( I ) + AA
S = S + AA
END DO
* i=j-1-k
AA = ABS( A( I+J*LDA ) )
* A(j-k-1,j-k-1)
S = S + AA
WORK( J-K-1 ) = WORK( J-K-1 ) + S
I = I + 1
AA = ABS( A( I+J*LDA ) )
* A(j,j)
S = AA
DO L = J + 1, N - 1
I = I + 1
AA = ABS( A( I+J*LDA ) )
* A(j,l)
WORK( L ) = WORK( L ) + AA
S = S + AA
END DO
WORK( J ) = WORK( J ) + S
END DO
* j=n
S = ZERO
DO I = 0, K - 2
AA = ABS( A( I+J*LDA ) )
* A(i,k-1)
WORK( I ) = WORK( I ) + AA
S = S + AA
END DO
* i=k-1
AA = ABS( A( I+J*LDA ) )
* A(k-1,k-1)
S = S + AA
WORK( I ) = WORK( I ) + S
I = ISAMAX( N, WORK, 1 )
VALUE = WORK( I-1 )
ELSE
* ilu=1
DO I = K, N - 1
WORK( I ) = ZERO
END DO
* j=0 is special :process col A(k:n-1,k)
S = ABS( A( 0 ) )
* A(k,k)
DO I = 1, K - 1
AA = ABS( A( I ) )
* A(k+i,k)
WORK( I+K ) = WORK( I+K ) + AA
S = S + AA
END DO
WORK( K ) = WORK( K ) + S
DO J = 1, K - 1
* process
S = ZERO
DO I = 0, J - 2
AA = ABS( A( I+J*LDA ) )
* A(j-1,i)
WORK( I ) = WORK( I ) + AA
S = S + AA
END DO
AA = ABS( A( I+J*LDA ) )
* i=j-1 so process of A(j-1,j-1)
S = S + AA
WORK( J-1 ) = S
* is initialised here
I = I + 1
* i=j process A(j+k,j+k)
AA = ABS( A( I+J*LDA ) )
S = AA
DO L = K + J + 1, N - 1
I = I + 1
AA = ABS( A( I+J*LDA ) )
* A(l,k+j)
S = S + AA
WORK( L ) = WORK( L ) + AA
END DO
WORK( K+J ) = WORK( K+J ) + S
END DO
* j=k is special :process col A(k,0:k-1)
S = ZERO
DO I = 0, K - 2
AA = ABS( A( I+J*LDA ) )
* A(k,i)
WORK( I ) = WORK( I ) + AA
S = S + AA
END DO
* i=k-1
AA = ABS( A( I+J*LDA ) )
* A(k-1,k-1)
S = S + AA
WORK( I ) = S
* done with col j=k+1
DO J = K + 1, N
* process col j-1 of A = A(j-1,0:k-1)
S = ZERO
DO I = 0, K - 1
AA = ABS( A( I+J*LDA ) )
* A(j-1,i)
WORK( I ) = WORK( I ) + AA
S = S + AA
END DO
WORK( J-1 ) = WORK( J-1 ) + S
END DO
I = ISAMAX( N, WORK, 1 )
VALUE = WORK( I-1 )
END IF
END IF
END IF
ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN
*
* Find normF(A).
*
K = ( N+1 ) / 2
SCALE = ZERO
S = ONE
IF( NOE.EQ.1 ) THEN
* n is odd
IF( IFM.EQ.1 ) THEN
* A is normal
IF( ILU.EQ.0 ) THEN
* A is upper
DO J = 0, K - 3
CALL SLASSQ( K-J-2, A( K+J+1+J*LDA ), 1, SCALE, S )
* L at A(k,0)
END DO
DO J = 0, K - 1
CALL SLASSQ( K+J-1, A( 0+J*LDA ), 1, SCALE, S )
* trap U at A(0,0)
END DO
S = S + S
* double s for the off diagonal elements
CALL SLASSQ( K-1, A( K ), LDA+1, SCALE, S )
* tri L at A(k,0)
CALL SLASSQ( K, A( K-1 ), LDA+1, SCALE, S )
* tri U at A(k-1,0)
ELSE
* ilu=1 & A is lower
DO J = 0, K - 1
CALL SLASSQ( N-J-1, A( J+1+J*LDA ), 1, SCALE, S )
* trap L at A(0,0)
END DO
DO J = 0, K - 2
CALL SLASSQ( J, A( 0+( 1+J )*LDA ), 1, SCALE, S )
* U at A(0,1)
END DO
S = S + S
* double s for the off diagonal elements
CALL SLASSQ( K, A( 0 ), LDA+1, SCALE, S )
* tri L at A(0,0)
CALL SLASSQ( K-1, A( 0+LDA ), LDA+1, SCALE, S )
* tri U at A(0,1)
END IF
ELSE
* A is xpose
IF( ILU.EQ.0 ) THEN
* A' is upper
DO J = 1, K - 2
CALL SLASSQ( J, A( 0+( K+J )*LDA ), 1, SCALE, S )
* U at A(0,k)
END DO
DO J = 0, K - 2
CALL SLASSQ( K, A( 0+J*LDA ), 1, SCALE, S )
* k by k-1 rect. at A(0,0)
END DO
DO J = 0, K - 2
CALL SLASSQ( K-J-1, A( J+1+( J+K-1 )*LDA ), 1,
+ SCALE, S )
* L at A(0,k-1)
END DO
S = S + S
* double s for the off diagonal elements
CALL SLASSQ( K-1, A( 0+K*LDA ), LDA+1, SCALE, S )
* tri U at A(0,k)
CALL SLASSQ( K, A( 0+( K-1 )*LDA ), LDA+1, SCALE, S )
* tri L at A(0,k-1)
ELSE
* A' is lower
DO J = 1, K - 1
CALL SLASSQ( J, A( 0+J*LDA ), 1, SCALE, S )
* U at A(0,0)
END DO
DO J = K, N - 1
CALL SLASSQ( K, A( 0+J*LDA ), 1, SCALE, S )
* k by k-1 rect. at A(0,k)
END DO
DO J = 0, K - 3
CALL SLASSQ( K-J-2, A( J+2+J*LDA ), 1, SCALE, S )
* L at A(1,0)
END DO
S = S + S
* double s for the off diagonal elements
CALL SLASSQ( K, A( 0 ), LDA+1, SCALE, S )
* tri U at A(0,0)
CALL SLASSQ( K-1, A( 1 ), LDA+1, SCALE, S )
* tri L at A(1,0)
END IF
END IF
ELSE
* n is even
IF( IFM.EQ.1 ) THEN
* A is normal
IF( ILU.EQ.0 ) THEN
* A is upper
DO J = 0, K - 2
CALL SLASSQ( K-J-1, A( K+J+2+J*LDA ), 1, SCALE, S )
* L at A(k+1,0)
END DO
DO J = 0, K - 1
CALL SLASSQ( K+J, A( 0+J*LDA ), 1, SCALE, S )
* trap U at A(0,0)
END DO
S = S + S
* double s for the off diagonal elements
CALL SLASSQ( K, A( K+1 ), LDA+1, SCALE, S )
* tri L at A(k+1,0)
CALL SLASSQ( K, A( K ), LDA+1, SCALE, S )
* tri U at A(k,0)
ELSE
* ilu=1 & A is lower
DO J = 0, K - 1
CALL SLASSQ( N-J-1, A( J+2+J*LDA ), 1, SCALE, S )
* trap L at A(1,0)
END DO
DO J = 1, K - 1
CALL SLASSQ( J, A( 0+J*LDA ), 1, SCALE, S )
* U at A(0,0)
END DO
S = S + S
* double s for the off diagonal elements
CALL SLASSQ( K, A( 1 ), LDA+1, SCALE, S )
* tri L at A(1,0)
CALL SLASSQ( K, A( 0 ), LDA+1, SCALE, S )
* tri U at A(0,0)
END IF
ELSE
* A is xpose
IF( ILU.EQ.0 ) THEN
* A' is upper
DO J = 1, K - 1
CALL SLASSQ( J, A( 0+( K+1+J )*LDA ), 1, SCALE, S )
* U at A(0,k+1)
END DO
DO J = 0, K - 1
CALL SLASSQ( K, A( 0+J*LDA ), 1, SCALE, S )
* k by k rect. at A(0,0)
END DO
DO J = 0, K - 2
CALL SLASSQ( K-J-1, A( J+1+( J+K )*LDA ), 1, SCALE,
+ S )
* L at A(0,k)
END DO
S = S + S
* double s for the off diagonal elements
CALL SLASSQ( K, A( 0+( K+1 )*LDA ), LDA+1, SCALE, S )
* tri U at A(0,k+1)
CALL SLASSQ( K, A( 0+K*LDA ), LDA+1, SCALE, S )
* tri L at A(0,k)
ELSE
* A' is lower
DO J = 1, K - 1
CALL SLASSQ( J, A( 0+( J+1 )*LDA ), 1, SCALE, S )
* U at A(0,1)
END DO
DO J = K + 1, N
CALL SLASSQ( K, A( 0+J*LDA ), 1, SCALE, S )
* k by k rect. at A(0,k+1)
END DO
DO J = 0, K - 2
CALL SLASSQ( K-J-1, A( J+1+J*LDA ), 1, SCALE, S )
* L at A(0,0)
END DO
S = S + S
* double s for the off diagonal elements
CALL SLASSQ( K, A( LDA ), LDA+1, SCALE, S )
* tri L at A(0,1)
CALL SLASSQ( K, A( 0 ), LDA+1, SCALE, S )
* tri U at A(0,0)
END IF
END IF
END IF
VALUE = SCALE*SQRT( S )
END IF
*
SLANSF = VALUE
RETURN
*
* End of SLANSF
*
END