SUBROUTINE DLAGTF( N, A, LAMBDA, B, C, TOL, D, IN, INFO ) * * -- LAPACK routine (version 3.2) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * November 2006 * * .. Scalar Arguments .. INTEGER INFO, N DOUBLE PRECISION LAMBDA, TOL * .. * .. Array Arguments .. INTEGER IN( * ) DOUBLE PRECISION A( * ), B( * ), C( * ), D( * ) * .. * * Purpose * ======= * * DLAGTF factorizes the matrix (T - lambda*I), where T is an n by n * tridiagonal matrix and lambda is a scalar, as * * T - lambda*I = PLU, * * where P is a permutation matrix, L is a unit lower tridiagonal matrix * with at most one non-zero sub-diagonal elements per column and U is * an upper triangular matrix with at most two non-zero super-diagonal * elements per column. * * The factorization is obtained by Gaussian elimination with partial * pivoting and implicit row scaling. * * The parameter LAMBDA is included in the routine so that DLAGTF may * be used, in conjunction with DLAGTS, to obtain eigenvectors of T by * inverse iteration. * * Arguments * ========= * * N (input) INTEGER * The order of the matrix T. * * A (input/output) DOUBLE PRECISION array, dimension (N) * On entry, A must contain the diagonal elements of T. * * On exit, A is overwritten by the n diagonal elements of the * upper triangular matrix U of the factorization of T. * * LAMBDA (input) DOUBLE PRECISION * On entry, the scalar lambda. * * B (input/output) DOUBLE PRECISION array, dimension (N-1) * On entry, B must contain the (n-1) super-diagonal elements of * T. * * On exit, B is overwritten by the (n-1) super-diagonal * elements of the matrix U of the factorization of T. * * C (input/output) DOUBLE PRECISION array, dimension (N-1) * On entry, C must contain the (n-1) sub-diagonal elements of * T. * * On exit, C is overwritten by the (n-1) sub-diagonal elements * of the matrix L of the factorization of T. * * TOL (input) DOUBLE PRECISION * On entry, a relative tolerance used to indicate whether or * not the matrix (T - lambda*I) is nearly singular. TOL should * normally be chose as approximately the largest relative error * in the elements of T. For example, if the elements of T are * correct to about 4 significant figures, then TOL should be * set to about 5*10**(-4). If TOL is supplied as less than eps, * where eps is the relative machine precision, then the value * eps is used in place of TOL. * * D (output) DOUBLE PRECISION array, dimension (N-2) * On exit, D is overwritten by the (n-2) second super-diagonal * elements of the matrix U of the factorization of T. * * IN (output) INTEGER array, dimension (N) * On exit, IN contains details of the permutation matrix P. If * an interchange occurred at the kth step of the elimination, * then IN(k) = 1, otherwise IN(k) = 0. The element IN(n) * returns the smallest positive integer j such that * * abs( u(j,j) ).le. norm( (T - lambda*I)(j) )*TOL, * * where norm( A(j) ) denotes the sum of the absolute values of * the jth row of the matrix A. If no such j exists then IN(n) * is returned as zero. If IN(n) is returned as positive, then a * diagonal element of U is small, indicating that * (T - lambda*I) is singular or nearly singular, * * INFO (output) INTEGER * = 0 : successful exit * .lt. 0: if INFO = -k, the kth argument had an illegal value * * ===================================================================== * * .. Parameters .. DOUBLE PRECISION ZERO PARAMETER ( ZERO = 0.0D+0 ) * .. * .. Local Scalars .. INTEGER K DOUBLE PRECISION EPS, MULT, PIV1, PIV2, SCALE1, SCALE2, TEMP, TL * .. * .. Intrinsic Functions .. INTRINSIC ABS, MAX * .. * .. External Functions .. DOUBLE PRECISION DLAMCH EXTERNAL DLAMCH * .. * .. External Subroutines .. EXTERNAL XERBLA * .. * .. Executable Statements .. * INFO = 0 IF( N.LT.0 ) THEN INFO = -1 CALL XERBLA( 'DLAGTF', -INFO ) RETURN END IF * IF( N.EQ.0 ) \$ RETURN * A( 1 ) = A( 1 ) - LAMBDA IN( N ) = 0 IF( N.EQ.1 ) THEN IF( A( 1 ).EQ.ZERO ) \$ IN( 1 ) = 1 RETURN END IF * EPS = DLAMCH( 'Epsilon' ) * TL = MAX( TOL, EPS ) SCALE1 = ABS( A( 1 ) ) + ABS( B( 1 ) ) DO 10 K = 1, N - 1 A( K+1 ) = A( K+1 ) - LAMBDA SCALE2 = ABS( C( K ) ) + ABS( A( K+1 ) ) IF( K.LT.( N-1 ) ) \$ SCALE2 = SCALE2 + ABS( B( K+1 ) ) IF( A( K ).EQ.ZERO ) THEN PIV1 = ZERO ELSE PIV1 = ABS( A( K ) ) / SCALE1 END IF IF( C( K ).EQ.ZERO ) THEN IN( K ) = 0 PIV2 = ZERO SCALE1 = SCALE2 IF( K.LT.( N-1 ) ) \$ D( K ) = ZERO ELSE PIV2 = ABS( C( K ) ) / SCALE2 IF( PIV2.LE.PIV1 ) THEN IN( K ) = 0 SCALE1 = SCALE2 C( K ) = C( K ) / A( K ) A( K+1 ) = A( K+1 ) - C( K )*B( K ) IF( K.LT.( N-1 ) ) \$ D( K ) = ZERO ELSE IN( K ) = 1 MULT = A( K ) / C( K ) A( K ) = C( K ) TEMP = A( K+1 ) A( K+1 ) = B( K ) - MULT*TEMP IF( K.LT.( N-1 ) ) THEN D( K ) = B( K+1 ) B( K+1 ) = -MULT*D( K ) END IF B( K ) = TEMP C( K ) = MULT END IF END IF IF( ( MAX( PIV1, PIV2 ).LE.TL ) .AND. ( IN( N ).EQ.0 ) ) \$ IN( N ) = K 10 CONTINUE IF( ( ABS( A( N ) ).LE.SCALE1*TL ) .AND. ( IN( N ).EQ.0 ) ) \$ IN( N ) = N * RETURN * * End of DLAGTF * END