SUBROUTINE CSPTRS( UPLO, N, NRHS, AP, IPIV, B, LDB, INFO ) * * -- LAPACK routine (version 3.2) -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * November 2006 * * .. Scalar Arguments .. CHARACTER UPLO INTEGER INFO, LDB, N, NRHS * .. * .. Array Arguments .. INTEGER IPIV( * ) COMPLEX AP( * ), B( LDB, * ) * .. * * Purpose * ======= * * CSPTRS solves a system of linear equations A*X = B with a complex * symmetric matrix A stored in packed format using the factorization * A = U*D*U**T or A = L*D*L**T computed by CSPTRF. * * Arguments * ========= * * UPLO (input) CHARACTER*1 * Specifies whether the details of the factorization are stored * as an upper or lower triangular matrix. * = 'U': Upper triangular, form is A = U*D*U**T; * = 'L': Lower triangular, form is A = L*D*L**T. * * N (input) INTEGER * The order of the matrix A. N >= 0. * * NRHS (input) INTEGER * The number of right hand sides, i.e., the number of columns * of the matrix B. NRHS >= 0. * * AP (input) COMPLEX array, dimension (N*(N+1)/2) * The block diagonal matrix D and the multipliers used to * obtain the factor U or L as computed by CSPTRF, stored as a * packed triangular matrix. * * IPIV (input) INTEGER array, dimension (N) * Details of the interchanges and the block structure of D * as determined by CSPTRF. * * B (input/output) COMPLEX array, dimension (LDB,NRHS) * On entry, the right hand side matrix B. * On exit, the solution matrix X. * * LDB (input) INTEGER * The leading dimension of the array B. LDB >= max(1,N). * * INFO (output) INTEGER * = 0: successful exit * < 0: if INFO = -i, the i-th argument had an illegal value * * ===================================================================== * * .. Parameters .. COMPLEX ONE PARAMETER ( ONE = ( 1.0E+0, 0.0E+0 ) ) * .. * .. Local Scalars .. LOGICAL UPPER INTEGER J, K, KC, KP COMPLEX AK, AKM1, AKM1K, BK, BKM1, DENOM * .. * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. External Subroutines .. EXTERNAL CGEMV, CGERU, CSCAL, CSWAP, XERBLA * .. * .. Intrinsic Functions .. INTRINSIC MAX * .. * .. Executable Statements .. * INFO = 0 UPPER = LSAME( UPLO, 'U' ) IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN INFO = -1 ELSE IF( N.LT.0 ) THEN INFO = -2 ELSE IF( NRHS.LT.0 ) THEN INFO = -3 ELSE IF( LDB.LT.MAX( 1, N ) ) THEN INFO = -7 END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'CSPTRS', -INFO ) RETURN END IF * * Quick return if possible * IF( N.EQ.0 .OR. NRHS.EQ.0 ) \$ RETURN * IF( UPPER ) THEN * * Solve A*X = B, where A = U*D*U'. * * First solve U*D*X = B, overwriting B with X. * * K is the main loop index, decreasing from N to 1 in steps of * 1 or 2, depending on the size of the diagonal blocks. * K = N KC = N*( N+1 ) / 2 + 1 10 CONTINUE * * If K < 1, exit from loop. * IF( K.LT.1 ) \$ GO TO 30 * KC = KC - K IF( IPIV( K ).GT.0 ) THEN * * 1 x 1 diagonal block * * Interchange rows K and IPIV(K). * KP = IPIV( K ) IF( KP.NE.K ) \$ CALL CSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB ) * * Multiply by inv(U(K)), where U(K) is the transformation * stored in column K of A. * CALL CGERU( K-1, NRHS, -ONE, AP( KC ), 1, B( K, 1 ), LDB, \$ B( 1, 1 ), LDB ) * * Multiply by the inverse of the diagonal block. * CALL CSCAL( NRHS, ONE / AP( KC+K-1 ), B( K, 1 ), LDB ) K = K - 1 ELSE * * 2 x 2 diagonal block * * Interchange rows K-1 and -IPIV(K). * KP = -IPIV( K ) IF( KP.NE.K-1 ) \$ CALL CSWAP( NRHS, B( K-1, 1 ), LDB, B( KP, 1 ), LDB ) * * Multiply by inv(U(K)), where U(K) is the transformation * stored in columns K-1 and K of A. * CALL CGERU( K-2, NRHS, -ONE, AP( KC ), 1, B( K, 1 ), LDB, \$ B( 1, 1 ), LDB ) CALL CGERU( K-2, NRHS, -ONE, AP( KC-( K-1 ) ), 1, \$ B( K-1, 1 ), LDB, B( 1, 1 ), LDB ) * * Multiply by the inverse of the diagonal block. * AKM1K = AP( KC+K-2 ) AKM1 = AP( KC-1 ) / AKM1K AK = AP( KC+K-1 ) / AKM1K DENOM = AKM1*AK - ONE DO 20 J = 1, NRHS BKM1 = B( K-1, J ) / AKM1K BK = B( K, J ) / AKM1K B( K-1, J ) = ( AK*BKM1-BK ) / DENOM B( K, J ) = ( AKM1*BK-BKM1 ) / DENOM 20 CONTINUE KC = KC - K + 1 K = K - 2 END IF * GO TO 10 30 CONTINUE * * Next solve U'*X = B, overwriting B with X. * * K is the main loop index, increasing from 1 to N in steps of * 1 or 2, depending on the size of the diagonal blocks. * K = 1 KC = 1 40 CONTINUE * * If K > N, exit from loop. * IF( K.GT.N ) \$ GO TO 50 * IF( IPIV( K ).GT.0 ) THEN * * 1 x 1 diagonal block * * Multiply by inv(U'(K)), where U(K) is the transformation * stored in column K of A. * CALL CGEMV( 'Transpose', K-1, NRHS, -ONE, B, LDB, AP( KC ), \$ 1, ONE, B( K, 1 ), LDB ) * * Interchange rows K and IPIV(K). * KP = IPIV( K ) IF( KP.NE.K ) \$ CALL CSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB ) KC = KC + K K = K + 1 ELSE * * 2 x 2 diagonal block * * Multiply by inv(U'(K+1)), where U(K+1) is the transformation * stored in columns K and K+1 of A. * CALL CGEMV( 'Transpose', K-1, NRHS, -ONE, B, LDB, AP( KC ), \$ 1, ONE, B( K, 1 ), LDB ) CALL CGEMV( 'Transpose', K-1, NRHS, -ONE, B, LDB, \$ AP( KC+K ), 1, ONE, B( K+1, 1 ), LDB ) * * Interchange rows K and -IPIV(K). * KP = -IPIV( K ) IF( KP.NE.K ) \$ CALL CSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB ) KC = KC + 2*K + 1 K = K + 2 END IF * GO TO 40 50 CONTINUE * ELSE * * Solve A*X = B, where A = L*D*L'. * * First solve L*D*X = B, overwriting B with X. * * K is the main loop index, increasing from 1 to N in steps of * 1 or 2, depending on the size of the diagonal blocks. * K = 1 KC = 1 60 CONTINUE * * If K > N, exit from loop. * IF( K.GT.N ) \$ GO TO 80 * IF( IPIV( K ).GT.0 ) THEN * * 1 x 1 diagonal block * * Interchange rows K and IPIV(K). * KP = IPIV( K ) IF( KP.NE.K ) \$ CALL CSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB ) * * Multiply by inv(L(K)), where L(K) is the transformation * stored in column K of A. * IF( K.LT.N ) \$ CALL CGERU( N-K, NRHS, -ONE, AP( KC+1 ), 1, B( K, 1 ), \$ LDB, B( K+1, 1 ), LDB ) * * Multiply by the inverse of the diagonal block. * CALL CSCAL( NRHS, ONE / AP( KC ), B( K, 1 ), LDB ) KC = KC + N - K + 1 K = K + 1 ELSE * * 2 x 2 diagonal block * * Interchange rows K+1 and -IPIV(K). * KP = -IPIV( K ) IF( KP.NE.K+1 ) \$ CALL CSWAP( NRHS, B( K+1, 1 ), LDB, B( KP, 1 ), LDB ) * * Multiply by inv(L(K)), where L(K) is the transformation * stored in columns K and K+1 of A. * IF( K.LT.N-1 ) THEN CALL CGERU( N-K-1, NRHS, -ONE, AP( KC+2 ), 1, B( K, 1 ), \$ LDB, B( K+2, 1 ), LDB ) CALL CGERU( N-K-1, NRHS, -ONE, AP( KC+N-K+2 ), 1, \$ B( K+1, 1 ), LDB, B( K+2, 1 ), LDB ) END IF * * Multiply by the inverse of the diagonal block. * AKM1K = AP( KC+1 ) AKM1 = AP( KC ) / AKM1K AK = AP( KC+N-K+1 ) / AKM1K DENOM = AKM1*AK - ONE DO 70 J = 1, NRHS BKM1 = B( K, J ) / AKM1K BK = B( K+1, J ) / AKM1K B( K, J ) = ( AK*BKM1-BK ) / DENOM B( K+1, J ) = ( AKM1*BK-BKM1 ) / DENOM 70 CONTINUE KC = KC + 2*( N-K ) + 1 K = K + 2 END IF * GO TO 60 80 CONTINUE * * Next solve L'*X = B, overwriting B with X. * * K is the main loop index, decreasing from N to 1 in steps of * 1 or 2, depending on the size of the diagonal blocks. * K = N KC = N*( N+1 ) / 2 + 1 90 CONTINUE * * If K < 1, exit from loop. * IF( K.LT.1 ) \$ GO TO 100 * KC = KC - ( N-K+1 ) IF( IPIV( K ).GT.0 ) THEN * * 1 x 1 diagonal block * * Multiply by inv(L'(K)), where L(K) is the transformation * stored in column K of A. * IF( K.LT.N ) \$ CALL CGEMV( 'Transpose', N-K, NRHS, -ONE, B( K+1, 1 ), \$ LDB, AP( KC+1 ), 1, ONE, B( K, 1 ), LDB ) * * Interchange rows K and IPIV(K). * KP = IPIV( K ) IF( KP.NE.K ) \$ CALL CSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB ) K = K - 1 ELSE * * 2 x 2 diagonal block * * Multiply by inv(L'(K-1)), where L(K-1) is the transformation * stored in columns K-1 and K of A. * IF( K.LT.N ) THEN CALL CGEMV( 'Transpose', N-K, NRHS, -ONE, B( K+1, 1 ), \$ LDB, AP( KC+1 ), 1, ONE, B( K, 1 ), LDB ) CALL CGEMV( 'Transpose', N-K, NRHS, -ONE, B( K+1, 1 ), \$ LDB, AP( KC-( N-K ) ), 1, ONE, B( K-1, 1 ), \$ LDB ) END IF * * Interchange rows K and -IPIV(K). * KP = -IPIV( K ) IF( KP.NE.K ) \$ CALL CSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB ) KC = KC - ( N-K+2 ) K = K - 2 END IF * GO TO 90 100 CONTINUE END IF * RETURN * * End of CSPTRS * END