!> \brief \b CROTG ! ! =========== DOCUMENTATION =========== ! ! Online html documentation available at ! http://www.netlib.org/lapack/explore-html/ ! ! Definition: ! =========== ! ! CROTG constructs a plane rotation ! [ c s ] [ a ] = [ r ] ! [ -conjg(s) c ] [ b ] [ 0 ] ! where c is real, s is complex, and c**2 + conjg(s)*s = 1. ! !> \par Purpose: ! ============= !> !> \verbatim !> !> The computation uses the formulas !> |x| = sqrt( Re(x)**2 + Im(x)**2 ) !> sgn(x) = x / |x| if x /= 0 !> = 1 if x = 0 !> c = |a| / sqrt(|a|**2 + |b|**2) !> s = sgn(a) * conjg(b) / sqrt(|a|**2 + |b|**2) !> When a and b are real and r /= 0, the formulas simplify to !> r = sgn(a)*sqrt(|a|**2 + |b|**2) !> c = a / r !> s = b / r !> the same as in SROTG when |a| > |b|. When |b| >= |a|, the !> sign of c and s will be different from those computed by SROTG !> if the signs of a and b are not the same. !> !> \endverbatim ! ! Arguments: ! ========== ! !> \param[in,out] A !> \verbatim !> A is COMPLEX !> On entry, the scalar a. !> On exit, the scalar r. !> \endverbatim !> !> \param[in] B !> \verbatim !> B is COMPLEX !> The scalar b. !> \endverbatim !> !> \param[out] C !> \verbatim !> C is REAL !> The scalar c. !> \endverbatim !> !> \param[out] S !> \verbatim !> S is COMPLEX !> The scalar s. !> \endverbatim ! ! Authors: ! ======== ! !> \author Edward Anderson, Lockheed Martin ! !> \par Contributors: ! ================== !> !> Weslley Pereira, University of Colorado Denver, USA ! !> \ingroup single_blas_level1 ! !> \par Further Details: ! ===================== !> !> \verbatim !> !> Anderson E. (2017) !> Algorithm 978: Safe Scaling in the Level 1 BLAS !> ACM Trans Math Softw 44:1--28 !> https://doi.org/10.1145/3061665 !> !> \endverbatim ! ! ===================================================================== subroutine CROTG( a, b, c, s ) integer, parameter :: wp = kind(1.e0) ! ! -- Reference BLAS level1 routine -- ! -- Reference BLAS is a software package provided by Univ. of Tennessee, -- ! -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- ! ! .. Constants .. real(wp), parameter :: zero = 0.0_wp real(wp), parameter :: one = 1.0_wp complex(wp), parameter :: czero = 0.0_wp ! .. ! .. Scaling constants .. real(wp), parameter :: safmin = real(radix(0._wp),wp)**max( & minexponent(0._wp)-1, & 1-maxexponent(0._wp) & ) real(wp), parameter :: safmax = real(radix(0._wp),wp)**max( & 1-minexponent(0._wp), & maxexponent(0._wp)-1 & ) real(wp), parameter :: rtmin = sqrt( real(radix(0._wp),wp)**max( & minexponent(0._wp)-1, & 1-maxexponent(0._wp) & ) / epsilon(0._wp) ) real(wp), parameter :: rtmax = sqrt( real(radix(0._wp),wp)**max( & 1-minexponent(0._wp), & maxexponent(0._wp)-1 & ) * epsilon(0._wp) ) ! .. ! .. Scalar Arguments .. real(wp) :: c complex(wp) :: a, b, s ! .. ! .. Local Scalars .. real(wp) :: d, f1, f2, g1, g2, h2, p, u, uu, v, vv, w complex(wp) :: f, fs, g, gs, r, t ! .. ! .. Intrinsic Functions .. intrinsic :: abs, aimag, conjg, max, min, real, sqrt ! .. ! .. Statement Functions .. real(wp) :: ABSSQ ! .. ! .. Statement Function definitions .. ABSSQ( t ) = real( t )**2 + aimag( t )**2 ! .. ! .. Executable Statements .. ! f = a g = b if( g == czero ) then c = one s = czero r = f else if( f == czero ) then c = zero g1 = max( abs(real(g)), abs(aimag(g)) ) if( g1 > rtmin .and. g1 < rtmax ) then ! ! Use unscaled algorithm ! g2 = ABSSQ( g ) d = sqrt( g2 ) s = conjg( g ) / d r = d else ! ! Use scaled algorithm ! u = min( safmax, max( safmin, g1 ) ) uu = one / u gs = g*uu g2 = ABSSQ( gs ) d = sqrt( g2 ) s = conjg( gs ) / d r = d*u end if else f1 = max( abs(real(f)), abs(aimag(f)) ) g1 = max( abs(real(g)), abs(aimag(g)) ) if( f1 > rtmin .and. f1 < rtmax .and. & g1 > rtmin .and. g1 < rtmax ) then ! ! Use unscaled algorithm ! f2 = ABSSQ( f ) g2 = ABSSQ( g ) h2 = f2 + g2 if( f2 > rtmin .and. h2 < rtmax ) then d = sqrt( f2*h2 ) else d = sqrt( f2 )*sqrt( h2 ) end if p = 1 / d c = f2*p s = conjg( g )*( f*p ) r = f*( h2*p ) else ! ! Use scaled algorithm ! u = min( safmax, max( safmin, f1, g1 ) ) uu = one / u gs = g*uu g2 = ABSSQ( gs ) if( f1*uu < rtmin ) then ! ! f is not well-scaled when scaled by g1. ! Use a different scaling for f. ! v = min( safmax, max( safmin, f1 ) ) vv = one / v w = v * uu fs = f*vv f2 = ABSSQ( fs ) h2 = f2*w**2 + g2 else ! ! Otherwise use the same scaling for f and g. ! w = one fs = f*uu f2 = ABSSQ( fs ) h2 = f2 + g2 end if if( f2 > rtmin .and. h2 < rtmax ) then d = sqrt( f2*h2 ) else d = sqrt( f2 )*sqrt( h2 ) end if p = 1 / d c = ( f2*p )*w s = conjg( gs )*( fs*p ) r = ( fs*( h2*p ) )*u end if end if a = r return end subroutine