*> \brief \b DLALN2 solves a 1-by-1 or 2-by-2 linear system of equations of the specified form. * * =========== DOCUMENTATION =========== * * Online html documentation available at * http://www.netlib.org/lapack/explore-html/ * *> \htmlonly *> Download DLALN2 + dependencies *> *> [TGZ] *> *> [ZIP] *> *> [TXT] *> \endhtmlonly * * Definition: * =========== * * SUBROUTINE DLALN2( LTRANS, NA, NW, SMIN, CA, A, LDA, D1, D2, B, * LDB, WR, WI, X, LDX, SCALE, XNORM, INFO ) * * .. Scalar Arguments .. * LOGICAL LTRANS * INTEGER INFO, LDA, LDB, LDX, NA, NW * DOUBLE PRECISION CA, D1, D2, SCALE, SMIN, WI, WR, XNORM * .. * .. Array Arguments .. * DOUBLE PRECISION A( LDA, * ), B( LDB, * ), X( LDX, * ) * .. * * *> \par Purpose: * ============= *> *> \verbatim *> *> DLALN2 solves a system of the form (ca A - w D ) X = s B *> or (ca A**T - w D) X = s B with possible scaling ("s") and *> perturbation of A. (A**T means A-transpose.) *> *> A is an NA x NA real matrix, ca is a real scalar, D is an NA x NA *> real diagonal matrix, w is a real or complex value, and X and B are *> NA x 1 matrices -- real if w is real, complex if w is complex. NA *> may be 1 or 2. *> *> If w is complex, X and B are represented as NA x 2 matrices, *> the first column of each being the real part and the second *> being the imaginary part. *> *> "s" is a scaling factor (<= 1), computed by DLALN2, which is *> so chosen that X can be computed without overflow. X is further *> scaled if necessary to assure that norm(ca A - w D)*norm(X) is less *> than overflow. *> *> If both singular values of (ca A - w D) are less than SMIN, *> SMIN*identity will be used instead of (ca A - w D). If only one *> singular value is less than SMIN, one element of (ca A - w D) will be *> perturbed enough to make the smallest singular value roughly SMIN. *> If both singular values are at least SMIN, (ca A - w D) will not be *> perturbed. In any case, the perturbation will be at most some small *> multiple of max( SMIN, ulp*norm(ca A - w D) ). The singular values *> are computed by infinity-norm approximations, and thus will only be *> correct to a factor of 2 or so. *> *> Note: all input quantities are assumed to be smaller than overflow *> by a reasonable factor. (See BIGNUM.) *> \endverbatim * * Arguments: * ========== * *> \param[in] LTRANS *> \verbatim *> LTRANS is LOGICAL *> =.TRUE.: A-transpose will be used. *> =.FALSE.: A will be used (not transposed.) *> \endverbatim *> *> \param[in] NA *> \verbatim *> NA is INTEGER *> The size of the matrix A. It may (only) be 1 or 2. *> \endverbatim *> *> \param[in] NW *> \verbatim *> NW is INTEGER *> 1 if "w" is real, 2 if "w" is complex. It may only be 1 *> or 2. *> \endverbatim *> *> \param[in] SMIN *> \verbatim *> SMIN is DOUBLE PRECISION *> The desired lower bound on the singular values of A. This *> should be a safe distance away from underflow or overflow, *> say, between (underflow/machine precision) and (machine *> precision * overflow ). (See BIGNUM and ULP.) *> \endverbatim *> *> \param[in] CA *> \verbatim *> CA is DOUBLE PRECISION *> The coefficient c, which A is multiplied by. *> \endverbatim *> *> \param[in] A *> \verbatim *> A is DOUBLE PRECISION array, dimension (LDA,NA) *> The NA x NA matrix A. *> \endverbatim *> *> \param[in] LDA *> \verbatim *> LDA is INTEGER *> The leading dimension of A. It must be at least NA. *> \endverbatim *> *> \param[in] D1 *> \verbatim *> D1 is DOUBLE PRECISION *> The 1,1 element in the diagonal matrix D. *> \endverbatim *> *> \param[in] D2 *> \verbatim *> D2 is DOUBLE PRECISION *> The 2,2 element in the diagonal matrix D. Not used if NA=1. *> \endverbatim *> *> \param[in] B *> \verbatim *> B is DOUBLE PRECISION array, dimension (LDB,NW) *> The NA x NW matrix B (right-hand side). If NW=2 ("w" is *> complex), column 1 contains the real part of B and column 2 *> contains the imaginary part. *> \endverbatim *> *> \param[in] LDB *> \verbatim *> LDB is INTEGER *> The leading dimension of B. It must be at least NA. *> \endverbatim *> *> \param[in] WR *> \verbatim *> WR is DOUBLE PRECISION *> The real part of the scalar "w". *> \endverbatim *> *> \param[in] WI *> \verbatim *> WI is DOUBLE PRECISION *> The imaginary part of the scalar "w". Not used if NW=1. *> \endverbatim *> *> \param[out] X *> \verbatim *> X is DOUBLE PRECISION array, dimension (LDX,NW) *> The NA x NW matrix X (unknowns), as computed by DLALN2. *> If NW=2 ("w" is complex), on exit, column 1 will contain *> the real part of X and column 2 will contain the imaginary *> part. *> \endverbatim *> *> \param[in] LDX *> \verbatim *> LDX is INTEGER *> The leading dimension of X. It must be at least NA. *> \endverbatim *> *> \param[out] SCALE *> \verbatim *> SCALE is DOUBLE PRECISION *> The scale factor that B must be multiplied by to insure *> that overflow does not occur when computing X. Thus, *> (ca A - w D) X will be SCALE*B, not B (ignoring *> perturbations of A.) It will be at most 1. *> \endverbatim *> *> \param[out] XNORM *> \verbatim *> XNORM is DOUBLE PRECISION *> The infinity-norm of X, when X is regarded as an NA x NW *> real matrix. *> \endverbatim *> *> \param[out] INFO *> \verbatim *> INFO is INTEGER *> An error flag. It will be set to zero if no error occurs, *> a negative number if an argument is in error, or a positive *> number if ca A - w D had to be perturbed. *> The possible values are: *> = 0: No error occurred, and (ca A - w D) did not have to be *> perturbed. *> = 1: (ca A - w D) had to be perturbed to make its smallest *> (or only) singular value greater than SMIN. *> NOTE: In the interests of speed, this routine does not *> check the inputs for errors. *> \endverbatim * * Authors: * ======== * *> \author Univ. of Tennessee *> \author Univ. of California Berkeley *> \author Univ. of Colorado Denver *> \author NAG Ltd. * *> \ingroup doubleOTHERauxiliary * * ===================================================================== SUBROUTINE DLALN2( LTRANS, NA, NW, SMIN, CA, A, LDA, D1, D2, B, $ LDB, WR, WI, X, LDX, SCALE, XNORM, INFO ) * * -- LAPACK auxiliary routine -- * -- LAPACK is a software package provided by Univ. of Tennessee, -- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- * * .. Scalar Arguments .. LOGICAL LTRANS INTEGER INFO, LDA, LDB, LDX, NA, NW DOUBLE PRECISION CA, D1, D2, SCALE, SMIN, WI, WR, XNORM * .. * .. Array Arguments .. DOUBLE PRECISION A( LDA, * ), B( LDB, * ), X( LDX, * ) * .. * * ===================================================================== * * .. Parameters .. DOUBLE PRECISION ZERO, ONE PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 ) DOUBLE PRECISION TWO PARAMETER ( TWO = 2.0D0 ) * .. * .. Local Scalars .. INTEGER ICMAX, J DOUBLE PRECISION BBND, BI1, BI2, BIGNUM, BNORM, BR1, BR2, CI21, $ CI22, CMAX, CNORM, CR21, CR22, CSI, CSR, LI21, $ LR21, SMINI, SMLNUM, TEMP, U22ABS, UI11, UI11R, $ UI12, UI12S, UI22, UR11, UR11R, UR12, UR12S, $ UR22, XI1, XI2, XR1, XR2 * .. * .. Local Arrays .. LOGICAL RSWAP( 4 ), ZSWAP( 4 ) INTEGER IPIVOT( 4, 4 ) DOUBLE PRECISION CI( 2, 2 ), CIV( 4 ), CR( 2, 2 ), CRV( 4 ) * .. * .. External Functions .. DOUBLE PRECISION DLAMCH EXTERNAL DLAMCH * .. * .. External Subroutines .. EXTERNAL DLADIV * .. * .. Intrinsic Functions .. INTRINSIC ABS, MAX * .. * .. Equivalences .. EQUIVALENCE ( CI( 1, 1 ), CIV( 1 ) ), $ ( CR( 1, 1 ), CRV( 1 ) ) * .. * .. Data statements .. DATA ZSWAP / .FALSE., .FALSE., .TRUE., .TRUE. / DATA RSWAP / .FALSE., .TRUE., .FALSE., .TRUE. / DATA IPIVOT / 1, 2, 3, 4, 2, 1, 4, 3, 3, 4, 1, 2, 4, $ 3, 2, 1 / * .. * .. Executable Statements .. * * Compute BIGNUM * SMLNUM = TWO*DLAMCH( 'Safe minimum' ) BIGNUM = ONE / SMLNUM SMINI = MAX( SMIN, SMLNUM ) * * Don't check for input errors * INFO = 0 * * Standard Initializations * SCALE = ONE * IF( NA.EQ.1 ) THEN * * 1 x 1 (i.e., scalar) system C X = B * IF( NW.EQ.1 ) THEN * * Real 1x1 system. * * C = ca A - w D * CSR = CA*A( 1, 1 ) - WR*D1 CNORM = ABS( CSR ) * * If | C | < SMINI, use C = SMINI * IF( CNORM.LT.SMINI ) THEN CSR = SMINI CNORM = SMINI INFO = 1 END IF * * Check scaling for X = B / C * BNORM = ABS( B( 1, 1 ) ) IF( CNORM.LT.ONE .AND. BNORM.GT.ONE ) THEN IF( BNORM.GT.BIGNUM*CNORM ) $ SCALE = ONE / BNORM END IF * * Compute X * X( 1, 1 ) = ( B( 1, 1 )*SCALE ) / CSR XNORM = ABS( X( 1, 1 ) ) ELSE * * Complex 1x1 system (w is complex) * * C = ca A - w D * CSR = CA*A( 1, 1 ) - WR*D1 CSI = -WI*D1 CNORM = ABS( CSR ) + ABS( CSI ) * * If | C | < SMINI, use C = SMINI * IF( CNORM.LT.SMINI ) THEN CSR = SMINI CSI = ZERO CNORM = SMINI INFO = 1 END IF * * Check scaling for X = B / C * BNORM = ABS( B( 1, 1 ) ) + ABS( B( 1, 2 ) ) IF( CNORM.LT.ONE .AND. BNORM.GT.ONE ) THEN IF( BNORM.GT.BIGNUM*CNORM ) $ SCALE = ONE / BNORM END IF * * Compute X * CALL DLADIV( SCALE*B( 1, 1 ), SCALE*B( 1, 2 ), CSR, CSI, $ X( 1, 1 ), X( 1, 2 ) ) XNORM = ABS( X( 1, 1 ) ) + ABS( X( 1, 2 ) ) END IF * ELSE * * 2x2 System * * Compute the real part of C = ca A - w D (or ca A**T - w D ) * CR( 1, 1 ) = CA*A( 1, 1 ) - WR*D1 CR( 2, 2 ) = CA*A( 2, 2 ) - WR*D2 IF( LTRANS ) THEN CR( 1, 2 ) = CA*A( 2, 1 ) CR( 2, 1 ) = CA*A( 1, 2 ) ELSE CR( 2, 1 ) = CA*A( 2, 1 ) CR( 1, 2 ) = CA*A( 1, 2 ) END IF * IF( NW.EQ.1 ) THEN * * Real 2x2 system (w is real) * * Find the largest element in C * CMAX = ZERO ICMAX = 0 * DO 10 J = 1, 4 IF( ABS( CRV( J ) ).GT.CMAX ) THEN CMAX = ABS( CRV( J ) ) ICMAX = J END IF 10 CONTINUE * * If norm(C) < SMINI, use SMINI*identity. * IF( CMAX.LT.SMINI ) THEN BNORM = MAX( ABS( B( 1, 1 ) ), ABS( B( 2, 1 ) ) ) IF( SMINI.LT.ONE .AND. BNORM.GT.ONE ) THEN IF( BNORM.GT.BIGNUM*SMINI ) $ SCALE = ONE / BNORM END IF TEMP = SCALE / SMINI X( 1, 1 ) = TEMP*B( 1, 1 ) X( 2, 1 ) = TEMP*B( 2, 1 ) XNORM = TEMP*BNORM INFO = 1 RETURN END IF * * Gaussian elimination with complete pivoting. * UR11 = CRV( ICMAX ) CR21 = CRV( IPIVOT( 2, ICMAX ) ) UR12 = CRV( IPIVOT( 3, ICMAX ) ) CR22 = CRV( IPIVOT( 4, ICMAX ) ) UR11R = ONE / UR11 LR21 = UR11R*CR21 UR22 = CR22 - UR12*LR21 * * If smaller pivot < SMINI, use SMINI * IF( ABS( UR22 ).LT.SMINI ) THEN UR22 = SMINI INFO = 1 END IF IF( RSWAP( ICMAX ) ) THEN BR1 = B( 2, 1 ) BR2 = B( 1, 1 ) ELSE BR1 = B( 1, 1 ) BR2 = B( 2, 1 ) END IF BR2 = BR2 - LR21*BR1 BBND = MAX( ABS( BR1*( UR22*UR11R ) ), ABS( BR2 ) ) IF( BBND.GT.ONE .AND. ABS( UR22 ).LT.ONE ) THEN IF( BBND.GE.BIGNUM*ABS( UR22 ) ) $ SCALE = ONE / BBND END IF * XR2 = ( BR2*SCALE ) / UR22 XR1 = ( SCALE*BR1 )*UR11R - XR2*( UR11R*UR12 ) IF( ZSWAP( ICMAX ) ) THEN X( 1, 1 ) = XR2 X( 2, 1 ) = XR1 ELSE X( 1, 1 ) = XR1 X( 2, 1 ) = XR2 END IF XNORM = MAX( ABS( XR1 ), ABS( XR2 ) ) * * Further scaling if norm(A) norm(X) > overflow * IF( XNORM.GT.ONE .AND. CMAX.GT.ONE ) THEN IF( XNORM.GT.BIGNUM / CMAX ) THEN TEMP = CMAX / BIGNUM X( 1, 1 ) = TEMP*X( 1, 1 ) X( 2, 1 ) = TEMP*X( 2, 1 ) XNORM = TEMP*XNORM SCALE = TEMP*SCALE END IF END IF ELSE * * Complex 2x2 system (w is complex) * * Find the largest element in C * CI( 1, 1 ) = -WI*D1 CI( 2, 1 ) = ZERO CI( 1, 2 ) = ZERO CI( 2, 2 ) = -WI*D2 CMAX = ZERO ICMAX = 0 * DO 20 J = 1, 4 IF( ABS( CRV( J ) )+ABS( CIV( J ) ).GT.CMAX ) THEN CMAX = ABS( CRV( J ) ) + ABS( CIV( J ) ) ICMAX = J END IF 20 CONTINUE * * If norm(C) < SMINI, use SMINI*identity. * IF( CMAX.LT.SMINI ) THEN BNORM = MAX( ABS( B( 1, 1 ) )+ABS( B( 1, 2 ) ), $ ABS( B( 2, 1 ) )+ABS( B( 2, 2 ) ) ) IF( SMINI.LT.ONE .AND. BNORM.GT.ONE ) THEN IF( BNORM.GT.BIGNUM*SMINI ) $ SCALE = ONE / BNORM END IF TEMP = SCALE / SMINI X( 1, 1 ) = TEMP*B( 1, 1 ) X( 2, 1 ) = TEMP*B( 2, 1 ) X( 1, 2 ) = TEMP*B( 1, 2 ) X( 2, 2 ) = TEMP*B( 2, 2 ) XNORM = TEMP*BNORM INFO = 1 RETURN END IF * * Gaussian elimination with complete pivoting. * UR11 = CRV( ICMAX ) UI11 = CIV( ICMAX ) CR21 = CRV( IPIVOT( 2, ICMAX ) ) CI21 = CIV( IPIVOT( 2, ICMAX ) ) UR12 = CRV( IPIVOT( 3, ICMAX ) ) UI12 = CIV( IPIVOT( 3, ICMAX ) ) CR22 = CRV( IPIVOT( 4, ICMAX ) ) CI22 = CIV( IPIVOT( 4, ICMAX ) ) IF( ICMAX.EQ.1 .OR. ICMAX.EQ.4 ) THEN * * Code when off-diagonals of pivoted C are real * IF( ABS( UR11 ).GT.ABS( UI11 ) ) THEN TEMP = UI11 / UR11 UR11R = ONE / ( UR11*( ONE+TEMP**2 ) ) UI11R = -TEMP*UR11R ELSE TEMP = UR11 / UI11 UI11R = -ONE / ( UI11*( ONE+TEMP**2 ) ) UR11R = -TEMP*UI11R END IF LR21 = CR21*UR11R LI21 = CR21*UI11R UR12S = UR12*UR11R UI12S = UR12*UI11R UR22 = CR22 - UR12*LR21 UI22 = CI22 - UR12*LI21 ELSE * * Code when diagonals of pivoted C are real * UR11R = ONE / UR11 UI11R = ZERO LR21 = CR21*UR11R LI21 = CI21*UR11R UR12S = UR12*UR11R UI12S = UI12*UR11R UR22 = CR22 - UR12*LR21 + UI12*LI21 UI22 = -UR12*LI21 - UI12*LR21 END IF U22ABS = ABS( UR22 ) + ABS( UI22 ) * * If smaller pivot < SMINI, use SMINI * IF( U22ABS.LT.SMINI ) THEN UR22 = SMINI UI22 = ZERO INFO = 1 END IF IF( RSWAP( ICMAX ) ) THEN BR2 = B( 1, 1 ) BR1 = B( 2, 1 ) BI2 = B( 1, 2 ) BI1 = B( 2, 2 ) ELSE BR1 = B( 1, 1 ) BR2 = B( 2, 1 ) BI1 = B( 1, 2 ) BI2 = B( 2, 2 ) END IF BR2 = BR2 - LR21*BR1 + LI21*BI1 BI2 = BI2 - LI21*BR1 - LR21*BI1 BBND = MAX( ( ABS( BR1 )+ABS( BI1 ) )* $ ( U22ABS*( ABS( UR11R )+ABS( UI11R ) ) ), $ ABS( BR2 )+ABS( BI2 ) ) IF( BBND.GT.ONE .AND. U22ABS.LT.ONE ) THEN IF( BBND.GE.BIGNUM*U22ABS ) THEN SCALE = ONE / BBND BR1 = SCALE*BR1 BI1 = SCALE*BI1 BR2 = SCALE*BR2 BI2 = SCALE*BI2 END IF END IF * CALL DLADIV( BR2, BI2, UR22, UI22, XR2, XI2 ) XR1 = UR11R*BR1 - UI11R*BI1 - UR12S*XR2 + UI12S*XI2 XI1 = UI11R*BR1 + UR11R*BI1 - UI12S*XR2 - UR12S*XI2 IF( ZSWAP( ICMAX ) ) THEN X( 1, 1 ) = XR2 X( 2, 1 ) = XR1 X( 1, 2 ) = XI2 X( 2, 2 ) = XI1 ELSE X( 1, 1 ) = XR1 X( 2, 1 ) = XR2 X( 1, 2 ) = XI1 X( 2, 2 ) = XI2 END IF XNORM = MAX( ABS( XR1 )+ABS( XI1 ), ABS( XR2 )+ABS( XI2 ) ) * * Further scaling if norm(A) norm(X) > overflow * IF( XNORM.GT.ONE .AND. CMAX.GT.ONE ) THEN IF( XNORM.GT.BIGNUM / CMAX ) THEN TEMP = CMAX / BIGNUM X( 1, 1 ) = TEMP*X( 1, 1 ) X( 2, 1 ) = TEMP*X( 2, 1 ) X( 1, 2 ) = TEMP*X( 1, 2 ) X( 2, 2 ) = TEMP*X( 2, 2 ) XNORM = TEMP*XNORM SCALE = TEMP*SCALE END IF END IF END IF END IF * RETURN * * End of DLALN2 * END