.TH ZLASR 1 "November 2006" " LAPACK auxiliary routine (version 3.1) " " LAPACK auxiliary routine (version 3.1) "
.SH NAME
ZLASR - a sequence of real plane rotations to a complex matrix A, from either the left or the right
.SH SYNOPSIS
.TP 18
SUBROUTINE ZLASR(
SIDE, PIVOT, DIRECT, M, N, C, S, A, LDA )
.TP 18
.ti +4
CHARACTER
DIRECT, PIVOT, SIDE
.TP 18
.ti +4
INTEGER
LDA, M, N
.TP 18
.ti +4
DOUBLE
PRECISION C( * ), S( * )
.TP 18
.ti +4
COMPLEX*16
A( LDA, * )
.SH PURPOSE
ZLASR applies a sequence of real plane rotations to a complex matrix
A, from either the left or the right.
When SIDE = \(aqL\(aq, the transformation takes the form
.br
A := P*A
.br
and when SIDE = \(aqR\(aq, the transformation takes the form
.br
A := A*P**T
.br
where P is an orthogonal matrix consisting of a sequence of z plane
rotations, with z = M when SIDE = \(aqL\(aq and z = N when SIDE = \(aqR\(aq,
and P**T is the transpose of P.
.br
.br
When DIRECT = \(aqF\(aq (Forward sequence), then
.br
.br
P = P(z-1) * ... * P(2) * P(1)
.br
.br
and when DIRECT = \(aqB\(aq (Backward sequence), then
.br
.br
P = P(1) * P(2) * ... * P(z-1)
.br
.br
where P(k) is a plane rotation matrix defined by the 2-by-2 rotation
.br
R(k) = ( c(k) s(k) )
.br
= ( -s(k) c(k) ).
.br
.br
When PIVOT = \(aqV\(aq (Variable pivot), the rotation is performed
for the plane (k,k+1), i.e., P(k) has the form
.br
.br
P(k) = ( 1 )
( ... )
( 1 )
( c(k) s(k) )
( -s(k) c(k) )
( 1 )
( ... )
( 1 )
.br
where R(k) appears as a rank-2 modification to the identity matrix in
rows and columns k and k+1.
.br
.br
When PIVOT = \(aqT\(aq (Top pivot), the rotation is performed for the
plane (1,k+1), so P(k) has the form
.br
.br
P(k) = ( c(k) s(k) )
( 1 )
( ... )
( 1 )
( -s(k) c(k) )
( 1 )
( ... )
( 1 )
.br
where R(k) appears in rows and columns 1 and k+1.
.br
.br
Similarly, when PIVOT = \(aqB\(aq (Bottom pivot), the rotation is
performed for the plane (k,z), giving P(k) the form
.br
.br
P(k) = ( 1 )
( ... )
( 1 )
( c(k) s(k) )
( 1 )
( ... )
( 1 )
( -s(k) c(k) )
.br
where R(k) appears in rows and columns k and z. The rotations are
performed without ever forming P(k) explicitly.
.br
.SH ARGUMENTS
.TP 8
SIDE (input) CHARACTER*1
Specifies whether the plane rotation matrix P is applied to
A on the left or the right.
= \(aqL\(aq: Left, compute A := P*A
.br
= \(aqR\(aq: Right, compute A:= A*P**T
.TP 8
PIVOT (input) CHARACTER*1
Specifies the plane for which P(k) is a plane rotation
matrix.
= \(aqV\(aq: Variable pivot, the plane (k,k+1)
.br
= \(aqT\(aq: Top pivot, the plane (1,k+1)
.br
= \(aqB\(aq: Bottom pivot, the plane (k,z)
.TP 8
DIRECT (input) CHARACTER*1
Specifies whether P is a forward or backward sequence of
plane rotations.
= \(aqF\(aq: Forward, P = P(z-1)*...*P(2)*P(1)
.br
= \(aqB\(aq: Backward, P = P(1)*P(2)*...*P(z-1)
.TP 8
M (input) INTEGER
The number of rows of the matrix A. If m <= 1, an immediate
return is effected.
.TP 8
N (input) INTEGER
The number of columns of the matrix A. If n <= 1, an
immediate return is effected.
.TP 8
C (input) DOUBLE PRECISION array, dimension
(M-1) if SIDE = \(aqL\(aq
(N-1) if SIDE = \(aqR\(aq
The cosines c(k) of the plane rotations.
.TP 8
S (input) DOUBLE PRECISION array, dimension
(M-1) if SIDE = \(aqL\(aq
(N-1) if SIDE = \(aqR\(aq
The sines s(k) of the plane rotations. The 2-by-2 plane
rotation part of the matrix P(k), R(k), has the form
R(k) = ( c(k) s(k) )
( -s(k) c(k) ).
.TP 8
A (input/output) COMPLEX*16 array, dimension (LDA,N)
The M-by-N matrix A. On exit, A is overwritten by P*A if
SIDE = \(aqR\(aq or by A*P**T if SIDE = \(aqL\(aq.
.TP 8
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).