.TH ZGESC2 1 "November 2006" " LAPACK auxiliary routine (version 3.1) " " LAPACK auxiliary routine (version 3.1) "
.SH NAME
ZGESC2 - a system of linear equations A * X = scale* RHS with a general N-by-N matrix A using the LU factorization with complete pivoting computed by ZGETC2
.SH SYNOPSIS
.TP 19
SUBROUTINE ZGESC2(
N, A, LDA, RHS, IPIV, JPIV, SCALE )
.TP 19
.ti +4
INTEGER
LDA, N
.TP 19
.ti +4
DOUBLE
PRECISION SCALE
.TP 19
.ti +4
INTEGER
IPIV( * ), JPIV( * )
.TP 19
.ti +4
COMPLEX*16
A( LDA, * ), RHS( * )
.SH PURPOSE
ZGESC2 solves a system of linear equations
.SH ARGUMENTS
.TP 8
N (input) INTEGER
The number of columns of the matrix A.
.TP 8
A (input) COMPLEX*16 array, dimension (LDA, N)
On entry, the LU part of the factorization of the n-by-n
matrix A computed by ZGETC2: A = P * L * U * Q
.TP 8
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1, N).
.TP 8
RHS (input/output) COMPLEX*16 array, dimension N.
On entry, the right hand side vector b.
On exit, the solution vector X.
.TP 8
IPIV (input) INTEGER array, dimension (N).
The pivot indices; for 1 <= i <= N, row i of the
matrix has been interchanged with row IPIV(i).
.TP 8
JPIV (input) INTEGER array, dimension (N).
The pivot indices; for 1 <= j <= N, column j of the
matrix has been interchanged with column JPIV(j).
.TP 9
SCALE (output) DOUBLE PRECISION
On exit, SCALE contains the scale factor. SCALE is chosen
0 <= SCALE <= 1 to prevent owerflow in the solution.
.SH FURTHER DETAILS
Based on contributions by
.br
Bo Kagstrom and Peter Poromaa, Department of Computing Science,
Umea University, S-901 87 Umea, Sweden.
.br