.TH SLAUU2 1 "November 2006" " LAPACK auxiliary routine (version 3.1) " " LAPACK auxiliary routine (version 3.1) "
.SH NAME
SLAUU2 - the product U * U\(aq or L\(aq * L, where the triangular factor U or L is stored in the upper or lower triangular part of the array A
.SH SYNOPSIS
.TP 19
SUBROUTINE SLAUU2(
UPLO, N, A, LDA, INFO )
.TP 19
.ti +4
CHARACTER
UPLO
.TP 19
.ti +4
INTEGER
INFO, LDA, N
.TP 19
.ti +4
REAL
A( LDA, * )
.SH PURPOSE
SLAUU2 computes the product U * U\(aq or L\(aq * L, where the triangular
factor U or L is stored in the upper or lower triangular part of
the array A.
If UPLO = \(aqU\(aq or \(aqu\(aq then the upper triangle of the result is stored,
overwriting the factor U in A.
.br
If UPLO = \(aqL\(aq or \(aql\(aq then the lower triangle of the result is stored,
overwriting the factor L in A.
.br
This is the unblocked form of the algorithm, calling Level 2 BLAS.
.SH ARGUMENTS
.TP 8
UPLO (input) CHARACTER*1
Specifies whether the triangular factor stored in the array A
is upper or lower triangular:
.br
= \(aqU\(aq: Upper triangular
.br
= \(aqL\(aq: Lower triangular
.TP 8
N (input) INTEGER
The order of the triangular factor U or L. N >= 0.
.TP 8
A (input/output) REAL array, dimension (LDA,N)
On entry, the triangular factor U or L.
On exit, if UPLO = \(aqU\(aq, the upper triangle of A is
overwritten with the upper triangle of the product U * U\(aq;
if UPLO = \(aqL\(aq, the lower triangle of A is overwritten with
the lower triangle of the product L\(aq * L.
.TP 8
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
.TP 8
INFO (output) INTEGER
= 0: successful exit
.br
< 0: if INFO = -k, the k-th argument had an illegal value