SUBROUTINE SLAHQR( WANTT, WANTZ, N, ILO, IHI, H, LDH, WR, WI, \$ ILOZ, IHIZ, Z, LDZ, INFO ) * * -- LAPACK auxiliary routine (version 3.1) -- * Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. * November 2006 * * .. Scalar Arguments .. INTEGER IHI, IHIZ, ILO, ILOZ, INFO, LDH, LDZ, N LOGICAL WANTT, WANTZ * .. * .. Array Arguments .. REAL H( LDH, * ), WI( * ), WR( * ), Z( LDZ, * ) * .. * * Purpose * ======= * * SLAHQR is an auxiliary routine called by SHSEQR to update the * eigenvalues and Schur decomposition already computed by SHSEQR, by * dealing with the Hessenberg submatrix in rows and columns ILO to * IHI. * * Arguments * ========= * * WANTT (input) LOGICAL * = .TRUE. : the full Schur form T is required; * = .FALSE.: only eigenvalues are required. * * WANTZ (input) LOGICAL * = .TRUE. : the matrix of Schur vectors Z is required; * = .FALSE.: Schur vectors are not required. * * N (input) INTEGER * The order of the matrix H. N >= 0. * * ILO (input) INTEGER * IHI (input) INTEGER * It is assumed that H is already upper quasi-triangular in * rows and columns IHI+1:N, and that H(ILO,ILO-1) = 0 (unless * ILO = 1). SLAHQR works primarily with the Hessenberg * submatrix in rows and columns ILO to IHI, but applies * transformations to all of H if WANTT is .TRUE.. * 1 <= ILO <= max(1,IHI); IHI <= N. * * H (input/output) REAL array, dimension (LDH,N) * On entry, the upper Hessenberg matrix H. * On exit, if INFO is zero and if WANTT is .TRUE., H is upper * quasi-triangular in rows and columns ILO:IHI, with any * 2-by-2 diagonal blocks in standard form. If INFO is zero * and WANTT is .FALSE., the contents of H are unspecified on * exit. The output state of H if INFO is nonzero is given * below under the description of INFO. * * LDH (input) INTEGER * The leading dimension of the array H. LDH >= max(1,N). * * WR (output) REAL array, dimension (N) * WI (output) REAL array, dimension (N) * The real and imaginary parts, respectively, of the computed * eigenvalues ILO to IHI are stored in the corresponding * elements of WR and WI. If two eigenvalues are computed as a * complex conjugate pair, they are stored in consecutive * elements of WR and WI, say the i-th and (i+1)th, with * WI(i) > 0 and WI(i+1) < 0. If WANTT is .TRUE., the * eigenvalues are stored in the same order as on the diagonal * of the Schur form returned in H, with WR(i) = H(i,i), and, if * H(i:i+1,i:i+1) is a 2-by-2 diagonal block, * WI(i) = sqrt(H(i+1,i)*H(i,i+1)) and WI(i+1) = -WI(i). * * ILOZ (input) INTEGER * IHIZ (input) INTEGER * Specify the rows of Z to which transformations must be * applied if WANTZ is .TRUE.. * 1 <= ILOZ <= ILO; IHI <= IHIZ <= N. * * Z (input/output) REAL array, dimension (LDZ,N) * If WANTZ is .TRUE., on entry Z must contain the current * matrix Z of transformations accumulated by SHSEQR, and on * exit Z has been updated; transformations are applied only to * the submatrix Z(ILOZ:IHIZ,ILO:IHI). * If WANTZ is .FALSE., Z is not referenced. * * LDZ (input) INTEGER * The leading dimension of the array Z. LDZ >= max(1,N). * * INFO (output) INTEGER * = 0: successful exit * .GT. 0: If INFO = i, SLAHQR failed to compute all the * eigenvalues ILO to IHI in a total of 30 iterations * per eigenvalue; elements i+1:ihi of WR and WI * contain those eigenvalues which have been * successfully computed. * * If INFO .GT. 0 and WANTT is .FALSE., then on exit, * the remaining unconverged eigenvalues are the * eigenvalues of the upper Hessenberg matrix rows * and columns ILO thorugh INFO of the final, output * value of H. * * If INFO .GT. 0 and WANTT is .TRUE., then on exit * (*) (initial value of H)*U = U*(final value of H) * where U is an orthognal matrix. The final * value of H is upper Hessenberg and triangular in * rows and columns INFO+1 through IHI. * * If INFO .GT. 0 and WANTZ is .TRUE., then on exit * (final value of Z) = (initial value of Z)*U * where U is the orthogonal matrix in (*) * (regardless of the value of WANTT.) * * Further Details * =============== * * 02-96 Based on modifications by * David Day, Sandia National Laboratory, USA * * 12-04 Further modifications by * Ralph Byers, University of Kansas, USA * * This is a modified version of SLAHQR from LAPACK version 3.0. * It is (1) more robust against overflow and underflow and * (2) adopts the more conservative Ahues & Tisseur stopping * criterion (LAWN 122, 1997). * * ========================================================= * * .. Parameters .. INTEGER ITMAX PARAMETER ( ITMAX = 30 ) REAL ZERO, ONE, TWO PARAMETER ( ZERO = 0.0e0, ONE = 1.0e0, TWO = 2.0e0 ) REAL DAT1, DAT2 PARAMETER ( DAT1 = 3.0e0 / 4.0e0, DAT2 = -0.4375e0 ) * .. * .. Local Scalars .. REAL AA, AB, BA, BB, CS, DET, H11, H12, H21, H21S, \$ H22, RT1I, RT1R, RT2I, RT2R, RTDISC, S, SAFMAX, \$ SAFMIN, SMLNUM, SN, SUM, T1, T2, T3, TR, TST, \$ ULP, V2, V3 INTEGER I, I1, I2, ITS, J, K, L, M, NH, NR, NZ * .. * .. Local Arrays .. REAL V( 3 ) * .. * .. External Functions .. REAL SLAMCH EXTERNAL SLAMCH * .. * .. External Subroutines .. EXTERNAL SCOPY, SLABAD, SLANV2, SLARFG, SROT * .. * .. Intrinsic Functions .. INTRINSIC ABS, MAX, MIN, REAL, SQRT * .. * .. Executable Statements .. * INFO = 0 * * Quick return if possible * IF( N.EQ.0 ) \$ RETURN IF( ILO.EQ.IHI ) THEN WR( ILO ) = H( ILO, ILO ) WI( ILO ) = ZERO RETURN END IF * * ==== clear out the trash ==== DO 10 J = ILO, IHI - 3 H( J+2, J ) = ZERO H( J+3, J ) = ZERO 10 CONTINUE IF( ILO.LE.IHI-2 ) \$ H( IHI, IHI-2 ) = ZERO * NH = IHI - ILO + 1 NZ = IHIZ - ILOZ + 1 * * Set machine-dependent constants for the stopping criterion. * SAFMIN = SLAMCH( 'SAFE MINIMUM' ) SAFMAX = ONE / SAFMIN CALL SLABAD( SAFMIN, SAFMAX ) ULP = SLAMCH( 'PRECISION' ) SMLNUM = SAFMIN*( REAL( NH ) / ULP ) * * I1 and I2 are the indices of the first row and last column of H * to which transformations must be applied. If eigenvalues only are * being computed, I1 and I2 are set inside the main loop. * IF( WANTT ) THEN I1 = 1 I2 = N END IF * * The main loop begins here. I is the loop index and decreases from * IHI to ILO in steps of 1 or 2. Each iteration of the loop works * with the active submatrix in rows and columns L to I. * Eigenvalues I+1 to IHI have already converged. Either L = ILO or * H(L,L-1) is negligible so that the matrix splits. * I = IHI 20 CONTINUE L = ILO IF( I.LT.ILO ) \$ GO TO 160 * * Perform QR iterations on rows and columns ILO to I until a * submatrix of order 1 or 2 splits off at the bottom because a * subdiagonal element has become negligible. * DO 140 ITS = 0, ITMAX * * Look for a single small subdiagonal element. * DO 30 K = I, L + 1, -1 IF( ABS( H( K, K-1 ) ).LE.SMLNUM ) \$ GO TO 40 TST = ABS( H( K-1, K-1 ) ) + ABS( H( K, K ) ) IF( TST.EQ.ZERO ) THEN IF( K-2.GE.ILO ) \$ TST = TST + ABS( H( K-1, K-2 ) ) IF( K+1.LE.IHI ) \$ TST = TST + ABS( H( K+1, K ) ) END IF * ==== The following is a conservative small subdiagonal * . deflation criterion due to Ahues & Tisseur (LAWN 122, * . 1997). It has better mathematical foundation and * . improves accuracy in some cases. ==== IF( ABS( H( K, K-1 ) ).LE.ULP*TST ) THEN AB = MAX( ABS( H( K, K-1 ) ), ABS( H( K-1, K ) ) ) BA = MIN( ABS( H( K, K-1 ) ), ABS( H( K-1, K ) ) ) AA = MAX( ABS( H( K, K ) ), \$ ABS( H( K-1, K-1 )-H( K, K ) ) ) BB = MIN( ABS( H( K, K ) ), \$ ABS( H( K-1, K-1 )-H( K, K ) ) ) S = AA + AB IF( BA*( AB / S ).LE.MAX( SMLNUM, \$ ULP*( BB*( AA / S ) ) ) )GO TO 40 END IF 30 CONTINUE 40 CONTINUE L = K IF( L.GT.ILO ) THEN * * H(L,L-1) is negligible * H( L, L-1 ) = ZERO END IF * * Exit from loop if a submatrix of order 1 or 2 has split off. * IF( L.GE.I-1 ) \$ GO TO 150 * * Now the active submatrix is in rows and columns L to I. If * eigenvalues only are being computed, only the active submatrix * need be transformed. * IF( .NOT.WANTT ) THEN I1 = L I2 = I END IF * IF( ITS.EQ.10 .OR. ITS.EQ.20 ) THEN * * Exceptional shift. * H11 = DAT1*S + H( I, I ) H12 = DAT2*S H21 = S H22 = H11 ELSE * * Prepare to use Francis' double shift * (i.e. 2nd degree generalized Rayleigh quotient) * H11 = H( I-1, I-1 ) H21 = H( I, I-1 ) H12 = H( I-1, I ) H22 = H( I, I ) END IF S = ABS( H11 ) + ABS( H12 ) + ABS( H21 ) + ABS( H22 ) IF( S.EQ.ZERO ) THEN RT1R = ZERO RT1I = ZERO RT2R = ZERO RT2I = ZERO ELSE H11 = H11 / S H21 = H21 / S H12 = H12 / S H22 = H22 / S TR = ( H11+H22 ) / TWO DET = ( H11-TR )*( H22-TR ) - H12*H21 RTDISC = SQRT( ABS( DET ) ) IF( DET.GE.ZERO ) THEN * * ==== complex conjugate shifts ==== * RT1R = TR*S RT2R = RT1R RT1I = RTDISC*S RT2I = -RT1I ELSE * * ==== real shifts (use only one of them) ==== * RT1R = TR + RTDISC RT2R = TR - RTDISC IF( ABS( RT1R-H22 ).LE.ABS( RT2R-H22 ) ) THEN RT1R = RT1R*S RT2R = RT1R ELSE RT2R = RT2R*S RT1R = RT2R END IF RT1I = ZERO RT2I = ZERO END IF END IF * * Look for two consecutive small subdiagonal elements. * DO 50 M = I - 2, L, -1 * Determine the effect of starting the double-shift QR * iteration at row M, and see if this would make H(M,M-1) * negligible. (The following uses scaling to avoid * overflows and most underflows.) * H21S = H( M+1, M ) S = ABS( H( M, M )-RT2R ) + ABS( RT2I ) + ABS( H21S ) H21S = H( M+1, M ) / S V( 1 ) = H21S*H( M, M+1 ) + ( H( M, M )-RT1R )* \$ ( ( H( M, M )-RT2R ) / S ) - RT1I*( RT2I / S ) V( 2 ) = H21S*( H( M, M )+H( M+1, M+1 )-RT1R-RT2R ) V( 3 ) = H21S*H( M+2, M+1 ) S = ABS( V( 1 ) ) + ABS( V( 2 ) ) + ABS( V( 3 ) ) V( 1 ) = V( 1 ) / S V( 2 ) = V( 2 ) / S V( 3 ) = V( 3 ) / S IF( M.EQ.L ) \$ GO TO 60 IF( ABS( H( M, M-1 ) )*( ABS( V( 2 ) )+ABS( V( 3 ) ) ).LE. \$ ULP*ABS( V( 1 ) )*( ABS( H( M-1, M-1 ) )+ABS( H( M, \$ M ) )+ABS( H( M+1, M+1 ) ) ) )GO TO 60 50 CONTINUE 60 CONTINUE * * Double-shift QR step * DO 130 K = M, I - 1 * * The first iteration of this loop determines a reflection G * from the vector V and applies it from left and right to H, * thus creating a nonzero bulge below the subdiagonal. * * Each subsequent iteration determines a reflection G to * restore the Hessenberg form in the (K-1)th column, and thus * chases the bulge one step toward the bottom of the active * submatrix. NR is the order of G. * NR = MIN( 3, I-K+1 ) IF( K.GT.M ) \$ CALL SCOPY( NR, H( K, K-1 ), 1, V, 1 ) CALL SLARFG( NR, V( 1 ), V( 2 ), 1, T1 ) IF( K.GT.M ) THEN H( K, K-1 ) = V( 1 ) H( K+1, K-1 ) = ZERO IF( K.LT.I-1 ) \$ H( K+2, K-1 ) = ZERO ELSE IF( M.GT.L ) THEN H( K, K-1 ) = -H( K, K-1 ) END IF V2 = V( 2 ) T2 = T1*V2 IF( NR.EQ.3 ) THEN V3 = V( 3 ) T3 = T1*V3 * * Apply G from the left to transform the rows of the matrix * in columns K to I2. * DO 70 J = K, I2 SUM = H( K, J ) + V2*H( K+1, J ) + V3*H( K+2, J ) H( K, J ) = H( K, J ) - SUM*T1 H( K+1, J ) = H( K+1, J ) - SUM*T2 H( K+2, J ) = H( K+2, J ) - SUM*T3 70 CONTINUE * * Apply G from the right to transform the columns of the * matrix in rows I1 to min(K+3,I). * DO 80 J = I1, MIN( K+3, I ) SUM = H( J, K ) + V2*H( J, K+1 ) + V3*H( J, K+2 ) H( J, K ) = H( J, K ) - SUM*T1 H( J, K+1 ) = H( J, K+1 ) - SUM*T2 H( J, K+2 ) = H( J, K+2 ) - SUM*T3 80 CONTINUE * IF( WANTZ ) THEN * * Accumulate transformations in the matrix Z * DO 90 J = ILOZ, IHIZ SUM = Z( J, K ) + V2*Z( J, K+1 ) + V3*Z( J, K+2 ) Z( J, K ) = Z( J, K ) - SUM*T1 Z( J, K+1 ) = Z( J, K+1 ) - SUM*T2 Z( J, K+2 ) = Z( J, K+2 ) - SUM*T3 90 CONTINUE END IF ELSE IF( NR.EQ.2 ) THEN * * Apply G from the left to transform the rows of the matrix * in columns K to I2. * DO 100 J = K, I2 SUM = H( K, J ) + V2*H( K+1, J ) H( K, J ) = H( K, J ) - SUM*T1 H( K+1, J ) = H( K+1, J ) - SUM*T2 100 CONTINUE * * Apply G from the right to transform the columns of the * matrix in rows I1 to min(K+3,I). * DO 110 J = I1, I SUM = H( J, K ) + V2*H( J, K+1 ) H( J, K ) = H( J, K ) - SUM*T1 H( J, K+1 ) = H( J, K+1 ) - SUM*T2 110 CONTINUE * IF( WANTZ ) THEN * * Accumulate transformations in the matrix Z * DO 120 J = ILOZ, IHIZ SUM = Z( J, K ) + V2*Z( J, K+1 ) Z( J, K ) = Z( J, K ) - SUM*T1 Z( J, K+1 ) = Z( J, K+1 ) - SUM*T2 120 CONTINUE END IF END IF 130 CONTINUE * 140 CONTINUE * * Failure to converge in remaining number of iterations * INFO = I RETURN * 150 CONTINUE * IF( L.EQ.I ) THEN * * H(I,I-1) is negligible: one eigenvalue has converged. * WR( I ) = H( I, I ) WI( I ) = ZERO ELSE IF( L.EQ.I-1 ) THEN * * H(I-1,I-2) is negligible: a pair of eigenvalues have converged. * * Transform the 2-by-2 submatrix to standard Schur form, * and compute and store the eigenvalues. * CALL SLANV2( H( I-1, I-1 ), H( I-1, I ), H( I, I-1 ), \$ H( I, I ), WR( I-1 ), WI( I-1 ), WR( I ), WI( I ), \$ CS, SN ) * IF( WANTT ) THEN * * Apply the transformation to the rest of H. * IF( I2.GT.I ) \$ CALL SROT( I2-I, H( I-1, I+1 ), LDH, H( I, I+1 ), LDH, \$ CS, SN ) CALL SROT( I-I1-1, H( I1, I-1 ), 1, H( I1, I ), 1, CS, SN ) END IF IF( WANTZ ) THEN * * Apply the transformation to Z. * CALL SROT( NZ, Z( ILOZ, I-1 ), 1, Z( ILOZ, I ), 1, CS, SN ) END IF END IF * * return to start of the main loop with new value of I. * I = L - 1 GO TO 20 * 160 CONTINUE RETURN * * End of SLAHQR * END