SUBROUTINE DSBGV( JOBZ, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, W, Z, \$ LDZ, WORK, INFO ) * * -- LAPACK driver routine (version 3.1) -- * Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. * November 2006 * * .. Scalar Arguments .. CHARACTER JOBZ, UPLO INTEGER INFO, KA, KB, LDAB, LDBB, LDZ, N * .. * .. Array Arguments .. DOUBLE PRECISION AB( LDAB, * ), BB( LDBB, * ), W( * ), \$ WORK( * ), Z( LDZ, * ) * .. * * Purpose * ======= * * DSBGV computes all the eigenvalues, and optionally, the eigenvectors * of a real generalized symmetric-definite banded eigenproblem, of * the form A*x=(lambda)*B*x. Here A and B are assumed to be symmetric * and banded, and B is also positive definite. * * Arguments * ========= * * JOBZ (input) CHARACTER*1 * = 'N': Compute eigenvalues only; * = 'V': Compute eigenvalues and eigenvectors. * * UPLO (input) CHARACTER*1 * = 'U': Upper triangles of A and B are stored; * = 'L': Lower triangles of A and B are stored. * * N (input) INTEGER * The order of the matrices A and B. N >= 0. * * KA (input) INTEGER * The number of superdiagonals of the matrix A if UPLO = 'U', * or the number of subdiagonals if UPLO = 'L'. KA >= 0. * * KB (input) INTEGER * The number of superdiagonals of the matrix B if UPLO = 'U', * or the number of subdiagonals if UPLO = 'L'. KB >= 0. * * AB (input/output) DOUBLE PRECISION array, dimension (LDAB, N) * On entry, the upper or lower triangle of the symmetric band * matrix A, stored in the first ka+1 rows of the array. The * j-th column of A is stored in the j-th column of the array AB * as follows: * if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-ka)<=i<=j; * if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+ka). * * On exit, the contents of AB are destroyed. * * LDAB (input) INTEGER * The leading dimension of the array AB. LDAB >= KA+1. * * BB (input/output) DOUBLE PRECISION array, dimension (LDBB, N) * On entry, the upper or lower triangle of the symmetric band * matrix B, stored in the first kb+1 rows of the array. The * j-th column of B is stored in the j-th column of the array BB * as follows: * if UPLO = 'U', BB(kb+1+i-j,j) = B(i,j) for max(1,j-kb)<=i<=j; * if UPLO = 'L', BB(1+i-j,j) = B(i,j) for j<=i<=min(n,j+kb). * * On exit, the factor S from the split Cholesky factorization * B = S**T*S, as returned by DPBSTF. * * LDBB (input) INTEGER * The leading dimension of the array BB. LDBB >= KB+1. * * W (output) DOUBLE PRECISION array, dimension (N) * If INFO = 0, the eigenvalues in ascending order. * * Z (output) DOUBLE PRECISION array, dimension (LDZ, N) * If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of * eigenvectors, with the i-th column of Z holding the * eigenvector associated with W(i). The eigenvectors are * normalized so that Z**T*B*Z = I. * If JOBZ = 'N', then Z is not referenced. * * LDZ (input) INTEGER * The leading dimension of the array Z. LDZ >= 1, and if * JOBZ = 'V', LDZ >= N. * * WORK (workspace) DOUBLE PRECISION array, dimension (3*N) * * INFO (output) INTEGER * = 0: successful exit * < 0: if INFO = -i, the i-th argument had an illegal value * > 0: if INFO = i, and i is: * <= N: the algorithm failed to converge: * i off-diagonal elements of an intermediate * tridiagonal form did not converge to zero; * > N: if INFO = N + i, for 1 <= i <= N, then DPBSTF * returned INFO = i: B is not positive definite. * The factorization of B could not be completed and * no eigenvalues or eigenvectors were computed. * * ===================================================================== * * .. Local Scalars .. LOGICAL UPPER, WANTZ CHARACTER VECT INTEGER IINFO, INDE, INDWRK * .. * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. External Subroutines .. EXTERNAL DPBSTF, DSBGST, DSBTRD, DSTEQR, DSTERF, XERBLA * .. * .. Executable Statements .. * * Test the input parameters. * WANTZ = LSAME( JOBZ, 'V' ) UPPER = LSAME( UPLO, 'U' ) * INFO = 0 IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN INFO = -1 ELSE IF( .NOT.( UPPER .OR. LSAME( UPLO, 'L' ) ) ) THEN INFO = -2 ELSE IF( N.LT.0 ) THEN INFO = -3 ELSE IF( KA.LT.0 ) THEN INFO = -4 ELSE IF( KB.LT.0 .OR. KB.GT.KA ) THEN INFO = -5 ELSE IF( LDAB.LT.KA+1 ) THEN INFO = -7 ELSE IF( LDBB.LT.KB+1 ) THEN INFO = -9 ELSE IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN INFO = -12 END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'DSBGV ', -INFO ) RETURN END IF * * Quick return if possible * IF( N.EQ.0 ) \$ RETURN * * Form a split Cholesky factorization of B. * CALL DPBSTF( UPLO, N, KB, BB, LDBB, INFO ) IF( INFO.NE.0 ) THEN INFO = N + INFO RETURN END IF * * Transform problem to standard eigenvalue problem. * INDE = 1 INDWRK = INDE + N CALL DSBGST( JOBZ, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, Z, LDZ, \$ WORK( INDWRK ), IINFO ) * * Reduce to tridiagonal form. * IF( WANTZ ) THEN VECT = 'U' ELSE VECT = 'N' END IF CALL DSBTRD( VECT, UPLO, N, KA, AB, LDAB, W, WORK( INDE ), Z, LDZ, \$ WORK( INDWRK ), IINFO ) * * For eigenvalues only, call DSTERF. For eigenvectors, call SSTEQR. * IF( .NOT.WANTZ ) THEN CALL DSTERF( N, W, WORK( INDE ), INFO ) ELSE CALL DSTEQR( JOBZ, N, W, WORK( INDE ), Z, LDZ, WORK( INDWRK ), \$ INFO ) END IF RETURN * * End of DSBGV * END