SUBROUTINE DPBSV( UPLO, N, KD, NRHS, AB, LDAB, B, LDB, INFO )
*
* -- LAPACK driver routine (version 3.1) --
* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
* November 2006
*
* .. Scalar Arguments ..
CHARACTER UPLO
INTEGER INFO, KD, LDAB, LDB, N, NRHS
* ..
* .. Array Arguments ..
DOUBLE PRECISION AB( LDAB, * ), B( LDB, * )
* ..
*
* Purpose
* =======
*
* DPBSV computes the solution to a real system of linear equations
* A * X = B,
* where A is an N-by-N symmetric positive definite band matrix and X
* and B are N-by-NRHS matrices.
*
* The Cholesky decomposition is used to factor A as
* A = U**T * U, if UPLO = 'U', or
* A = L * L**T, if UPLO = 'L',
* where U is an upper triangular band matrix, and L is a lower
* triangular band matrix, with the same number of superdiagonals or
* subdiagonals as A. The factored form of A is then used to solve the
* system of equations A * X = B.
*
* Arguments
* =========
*
* UPLO (input) CHARACTER*1
* = 'U': Upper triangle of A is stored;
* = 'L': Lower triangle of A is stored.
*
* N (input) INTEGER
* The number of linear equations, i.e., the order of the
* matrix A. N >= 0.
*
* KD (input) INTEGER
* The number of superdiagonals of the matrix A if UPLO = 'U',
* or the number of subdiagonals if UPLO = 'L'. KD >= 0.
*
* NRHS (input) INTEGER
* The number of right hand sides, i.e., the number of columns
* of the matrix B. NRHS >= 0.
*
* AB (input/output) DOUBLE PRECISION array, dimension (LDAB,N)
* On entry, the upper or lower triangle of the symmetric band
* matrix A, stored in the first KD+1 rows of the array. The
* j-th column of A is stored in the j-th column of the array AB
* as follows:
* if UPLO = 'U', AB(KD+1+i-j,j) = A(i,j) for max(1,j-KD)<=i<=j;
* if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(N,j+KD).
* See below for further details.
*
* On exit, if INFO = 0, the triangular factor U or L from the
* Cholesky factorization A = U**T*U or A = L*L**T of the band
* matrix A, in the same storage format as A.
*
* LDAB (input) INTEGER
* The leading dimension of the array AB. LDAB >= KD+1.
*
* B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)
* On entry, the N-by-NRHS right hand side matrix B.
* On exit, if INFO = 0, the N-by-NRHS solution matrix X.
*
* LDB (input) INTEGER
* The leading dimension of the array B. LDB >= max(1,N).
*
* INFO (output) INTEGER
* = 0: successful exit
* < 0: if INFO = -i, the i-th argument had an illegal value
* > 0: if INFO = i, the leading minor of order i of A is not
* positive definite, so the factorization could not be
* completed, and the solution has not been computed.
*
* Further Details
* ===============
*
* The band storage scheme is illustrated by the following example, when
* N = 6, KD = 2, and UPLO = 'U':
*
* On entry: On exit:
*
* * * a13 a24 a35 a46 * * u13 u24 u35 u46
* * a12 a23 a34 a45 a56 * u12 u23 u34 u45 u56
* a11 a22 a33 a44 a55 a66 u11 u22 u33 u44 u55 u66
*
* Similarly, if UPLO = 'L' the format of A is as follows:
*
* On entry: On exit:
*
* a11 a22 a33 a44 a55 a66 l11 l22 l33 l44 l55 l66
* a21 a32 a43 a54 a65 * l21 l32 l43 l54 l65 *
* a31 a42 a53 a64 * * l31 l42 l53 l64 * *
*
* Array elements marked * are not used by the routine.
*
* =====================================================================
*
* .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
* ..
* .. External Subroutines ..
EXTERNAL DPBTRF, DPBTRS, XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX
* ..
* .. Executable Statements ..
*
* Test the input parameters.
*
INFO = 0
IF( .NOT.LSAME( UPLO, 'U' ) .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
INFO = -1
ELSE IF( N.LT.0 ) THEN
INFO = -2
ELSE IF( KD.LT.0 ) THEN
INFO = -3
ELSE IF( NRHS.LT.0 ) THEN
INFO = -4
ELSE IF( LDAB.LT.KD+1 ) THEN
INFO = -6
ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
INFO = -8
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'DPBSV ', -INFO )
RETURN
END IF
*
* Compute the Cholesky factorization A = U'*U or A = L*L'.
*
CALL DPBTRF( UPLO, N, KD, AB, LDAB, INFO )
IF( INFO.EQ.0 ) THEN
*
* Solve the system A*X = B, overwriting B with X.
*
CALL DPBTRS( UPLO, N, KD, NRHS, AB, LDAB, B, LDB, INFO )
*
END IF
RETURN
*
* End of DPBSV
*
END