SUBROUTINE DLALS0( ICOMPQ, NL, NR, SQRE, NRHS, B, LDB, BX, LDBX, \$ PERM, GIVPTR, GIVCOL, LDGCOL, GIVNUM, LDGNUM, \$ POLES, DIFL, DIFR, Z, K, C, S, WORK, INFO ) * * -- LAPACK routine (version 3.1) -- * Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. * November 2006 * * .. Scalar Arguments .. INTEGER GIVPTR, ICOMPQ, INFO, K, LDB, LDBX, LDGCOL, \$ LDGNUM, NL, NR, NRHS, SQRE DOUBLE PRECISION C, S * .. * .. Array Arguments .. INTEGER GIVCOL( LDGCOL, * ), PERM( * ) DOUBLE PRECISION B( LDB, * ), BX( LDBX, * ), DIFL( * ), \$ DIFR( LDGNUM, * ), GIVNUM( LDGNUM, * ), \$ POLES( LDGNUM, * ), WORK( * ), Z( * ) * .. * * Purpose * ======= * * DLALS0 applies back the multiplying factors of either the left or the * right singular vector matrix of a diagonal matrix appended by a row * to the right hand side matrix B in solving the least squares problem * using the divide-and-conquer SVD approach. * * For the left singular vector matrix, three types of orthogonal * matrices are involved: * * (1L) Givens rotations: the number of such rotations is GIVPTR; the * pairs of columns/rows they were applied to are stored in GIVCOL; * and the C- and S-values of these rotations are stored in GIVNUM. * * (2L) Permutation. The (NL+1)-st row of B is to be moved to the first * row, and for J=2:N, PERM(J)-th row of B is to be moved to the * J-th row. * * (3L) The left singular vector matrix of the remaining matrix. * * For the right singular vector matrix, four types of orthogonal * matrices are involved: * * (1R) The right singular vector matrix of the remaining matrix. * * (2R) If SQRE = 1, one extra Givens rotation to generate the right * null space. * * (3R) The inverse transformation of (2L). * * (4R) The inverse transformation of (1L). * * Arguments * ========= * * ICOMPQ (input) INTEGER * Specifies whether singular vectors are to be computed in * factored form: * = 0: Left singular vector matrix. * = 1: Right singular vector matrix. * * NL (input) INTEGER * The row dimension of the upper block. NL >= 1. * * NR (input) INTEGER * The row dimension of the lower block. NR >= 1. * * SQRE (input) INTEGER * = 0: the lower block is an NR-by-NR square matrix. * = 1: the lower block is an NR-by-(NR+1) rectangular matrix. * * The bidiagonal matrix has row dimension N = NL + NR + 1, * and column dimension M = N + SQRE. * * NRHS (input) INTEGER * The number of columns of B and BX. NRHS must be at least 1. * * B (input/output) DOUBLE PRECISION array, dimension ( LDB, NRHS ) * On input, B contains the right hand sides of the least * squares problem in rows 1 through M. On output, B contains * the solution X in rows 1 through N. * * LDB (input) INTEGER * The leading dimension of B. LDB must be at least * max(1,MAX( M, N ) ). * * BX (workspace) DOUBLE PRECISION array, dimension ( LDBX, NRHS ) * * LDBX (input) INTEGER * The leading dimension of BX. * * PERM (input) INTEGER array, dimension ( N ) * The permutations (from deflation and sorting) applied * to the two blocks. * * GIVPTR (input) INTEGER * The number of Givens rotations which took place in this * subproblem. * * GIVCOL (input) INTEGER array, dimension ( LDGCOL, 2 ) * Each pair of numbers indicates a pair of rows/columns * involved in a Givens rotation. * * LDGCOL (input) INTEGER * The leading dimension of GIVCOL, must be at least N. * * GIVNUM (input) DOUBLE PRECISION array, dimension ( LDGNUM, 2 ) * Each number indicates the C or S value used in the * corresponding Givens rotation. * * LDGNUM (input) INTEGER * The leading dimension of arrays DIFR, POLES and * GIVNUM, must be at least K. * * POLES (input) DOUBLE PRECISION array, dimension ( LDGNUM, 2 ) * On entry, POLES(1:K, 1) contains the new singular * values obtained from solving the secular equation, and * POLES(1:K, 2) is an array containing the poles in the secular * equation. * * DIFL (input) DOUBLE PRECISION array, dimension ( K ). * On entry, DIFL(I) is the distance between I-th updated * (undeflated) singular value and the I-th (undeflated) old * singular value. * * DIFR (input) DOUBLE PRECISION array, dimension ( LDGNUM, 2 ). * On entry, DIFR(I, 1) contains the distances between I-th * updated (undeflated) singular value and the I+1-th * (undeflated) old singular value. And DIFR(I, 2) is the * normalizing factor for the I-th right singular vector. * * Z (input) DOUBLE PRECISION array, dimension ( K ) * Contain the components of the deflation-adjusted updating row * vector. * * K (input) INTEGER * Contains the dimension of the non-deflated matrix, * This is the order of the related secular equation. 1 <= K <=N. * * C (input) DOUBLE PRECISION * C contains garbage if SQRE =0 and the C-value of a Givens * rotation related to the right null space if SQRE = 1. * * S (input) DOUBLE PRECISION * S contains garbage if SQRE =0 and the S-value of a Givens * rotation related to the right null space if SQRE = 1. * * WORK (workspace) DOUBLE PRECISION array, dimension ( K ) * * INFO (output) INTEGER * = 0: successful exit. * < 0: if INFO = -i, the i-th argument had an illegal value. * * Further Details * =============== * * Based on contributions by * Ming Gu and Ren-Cang Li, Computer Science Division, University of * California at Berkeley, USA * Osni Marques, LBNL/NERSC, USA * * ===================================================================== * * .. Parameters .. DOUBLE PRECISION ONE, ZERO, NEGONE PARAMETER ( ONE = 1.0D0, ZERO = 0.0D0, NEGONE = -1.0D0 ) * .. * .. Local Scalars .. INTEGER I, J, M, N, NLP1 DOUBLE PRECISION DIFLJ, DIFRJ, DJ, DSIGJ, DSIGJP, TEMP * .. * .. External Subroutines .. EXTERNAL DCOPY, DGEMV, DLACPY, DLASCL, DROT, DSCAL, \$ XERBLA * .. * .. External Functions .. DOUBLE PRECISION DLAMC3, DNRM2 EXTERNAL DLAMC3, DNRM2 * .. * .. Intrinsic Functions .. INTRINSIC MAX * .. * .. Executable Statements .. * * Test the input parameters. * INFO = 0 * IF( ( ICOMPQ.LT.0 ) .OR. ( ICOMPQ.GT.1 ) ) THEN INFO = -1 ELSE IF( NL.LT.1 ) THEN INFO = -2 ELSE IF( NR.LT.1 ) THEN INFO = -3 ELSE IF( ( SQRE.LT.0 ) .OR. ( SQRE.GT.1 ) ) THEN INFO = -4 END IF * N = NL + NR + 1 * IF( NRHS.LT.1 ) THEN INFO = -5 ELSE IF( LDB.LT.N ) THEN INFO = -7 ELSE IF( LDBX.LT.N ) THEN INFO = -9 ELSE IF( GIVPTR.LT.0 ) THEN INFO = -11 ELSE IF( LDGCOL.LT.N ) THEN INFO = -13 ELSE IF( LDGNUM.LT.N ) THEN INFO = -15 ELSE IF( K.LT.1 ) THEN INFO = -20 END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'DLALS0', -INFO ) RETURN END IF * M = N + SQRE NLP1 = NL + 1 * IF( ICOMPQ.EQ.0 ) THEN * * Apply back orthogonal transformations from the left. * * Step (1L): apply back the Givens rotations performed. * DO 10 I = 1, GIVPTR CALL DROT( NRHS, B( GIVCOL( I, 2 ), 1 ), LDB, \$ B( GIVCOL( I, 1 ), 1 ), LDB, GIVNUM( I, 2 ), \$ GIVNUM( I, 1 ) ) 10 CONTINUE * * Step (2L): permute rows of B. * CALL DCOPY( NRHS, B( NLP1, 1 ), LDB, BX( 1, 1 ), LDBX ) DO 20 I = 2, N CALL DCOPY( NRHS, B( PERM( I ), 1 ), LDB, BX( I, 1 ), LDBX ) 20 CONTINUE * * Step (3L): apply the inverse of the left singular vector * matrix to BX. * IF( K.EQ.1 ) THEN CALL DCOPY( NRHS, BX, LDBX, B, LDB ) IF( Z( 1 ).LT.ZERO ) THEN CALL DSCAL( NRHS, NEGONE, B, LDB ) END IF ELSE DO 50 J = 1, K DIFLJ = DIFL( J ) DJ = POLES( J, 1 ) DSIGJ = -POLES( J, 2 ) IF( J.LT.K ) THEN DIFRJ = -DIFR( J, 1 ) DSIGJP = -POLES( J+1, 2 ) END IF IF( ( Z( J ).EQ.ZERO ) .OR. ( POLES( J, 2 ).EQ.ZERO ) ) \$ THEN WORK( J ) = ZERO ELSE WORK( J ) = -POLES( J, 2 )*Z( J ) / DIFLJ / \$ ( POLES( J, 2 )+DJ ) END IF DO 30 I = 1, J - 1 IF( ( Z( I ).EQ.ZERO ) .OR. \$ ( POLES( I, 2 ).EQ.ZERO ) ) THEN WORK( I ) = ZERO ELSE WORK( I ) = POLES( I, 2 )*Z( I ) / \$ ( DLAMC3( POLES( I, 2 ), DSIGJ )- \$ DIFLJ ) / ( POLES( I, 2 )+DJ ) END IF 30 CONTINUE DO 40 I = J + 1, K IF( ( Z( I ).EQ.ZERO ) .OR. \$ ( POLES( I, 2 ).EQ.ZERO ) ) THEN WORK( I ) = ZERO ELSE WORK( I ) = POLES( I, 2 )*Z( I ) / \$ ( DLAMC3( POLES( I, 2 ), DSIGJP )+ \$ DIFRJ ) / ( POLES( I, 2 )+DJ ) END IF 40 CONTINUE WORK( 1 ) = NEGONE TEMP = DNRM2( K, WORK, 1 ) CALL DGEMV( 'T', K, NRHS, ONE, BX, LDBX, WORK, 1, ZERO, \$ B( J, 1 ), LDB ) CALL DLASCL( 'G', 0, 0, TEMP, ONE, 1, NRHS, B( J, 1 ), \$ LDB, INFO ) 50 CONTINUE END IF * * Move the deflated rows of BX to B also. * IF( K.LT.MAX( M, N ) ) \$ CALL DLACPY( 'A', N-K, NRHS, BX( K+1, 1 ), LDBX, \$ B( K+1, 1 ), LDB ) ELSE * * Apply back the right orthogonal transformations. * * Step (1R): apply back the new right singular vector matrix * to B. * IF( K.EQ.1 ) THEN CALL DCOPY( NRHS, B, LDB, BX, LDBX ) ELSE DO 80 J = 1, K DSIGJ = POLES( J, 2 ) IF( Z( J ).EQ.ZERO ) THEN WORK( J ) = ZERO ELSE WORK( J ) = -Z( J ) / DIFL( J ) / \$ ( DSIGJ+POLES( J, 1 ) ) / DIFR( J, 2 ) END IF DO 60 I = 1, J - 1 IF( Z( J ).EQ.ZERO ) THEN WORK( I ) = ZERO ELSE WORK( I ) = Z( J ) / ( DLAMC3( DSIGJ, -POLES( I+1, \$ 2 ) )-DIFR( I, 1 ) ) / \$ ( DSIGJ+POLES( I, 1 ) ) / DIFR( I, 2 ) END IF 60 CONTINUE DO 70 I = J + 1, K IF( Z( J ).EQ.ZERO ) THEN WORK( I ) = ZERO ELSE WORK( I ) = Z( J ) / ( DLAMC3( DSIGJ, -POLES( I, \$ 2 ) )-DIFL( I ) ) / \$ ( DSIGJ+POLES( I, 1 ) ) / DIFR( I, 2 ) END IF 70 CONTINUE CALL DGEMV( 'T', K, NRHS, ONE, B, LDB, WORK, 1, ZERO, \$ BX( J, 1 ), LDBX ) 80 CONTINUE END IF * * Step (2R): if SQRE = 1, apply back the rotation that is * related to the right null space of the subproblem. * IF( SQRE.EQ.1 ) THEN CALL DCOPY( NRHS, B( M, 1 ), LDB, BX( M, 1 ), LDBX ) CALL DROT( NRHS, BX( 1, 1 ), LDBX, BX( M, 1 ), LDBX, C, S ) END IF IF( K.LT.MAX( M, N ) ) \$ CALL DLACPY( 'A', N-K, NRHS, B( K+1, 1 ), LDB, BX( K+1, 1 ), \$ LDBX ) * * Step (3R): permute rows of B. * CALL DCOPY( NRHS, BX( 1, 1 ), LDBX, B( NLP1, 1 ), LDB ) IF( SQRE.EQ.1 ) THEN CALL DCOPY( NRHS, BX( M, 1 ), LDBX, B( M, 1 ), LDB ) END IF DO 90 I = 2, N CALL DCOPY( NRHS, BX( I, 1 ), LDBX, B( PERM( I ), 1 ), LDB ) 90 CONTINUE * * Step (4R): apply back the Givens rotations performed. * DO 100 I = GIVPTR, 1, -1 CALL DROT( NRHS, B( GIVCOL( I, 2 ), 1 ), LDB, \$ B( GIVCOL( I, 1 ), 1 ), LDB, GIVNUM( I, 2 ), \$ -GIVNUM( I, 1 ) ) 100 CONTINUE END IF * RETURN * * End of DLALS0 * END