SUBROUTINE CPBTRS( UPLO, N, KD, NRHS, AB, LDAB, B, LDB, INFO ) * * -- LAPACK routine (version 3.1) -- * Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. * November 2006 * * .. Scalar Arguments .. CHARACTER UPLO INTEGER INFO, KD, LDAB, LDB, N, NRHS * .. * .. Array Arguments .. COMPLEX AB( LDAB, * ), B( LDB, * ) * .. * * Purpose * ======= * * CPBTRS solves a system of linear equations A*X = B with a Hermitian * positive definite band matrix A using the Cholesky factorization * A = U**H*U or A = L*L**H computed by CPBTRF. * * Arguments * ========= * * UPLO (input) CHARACTER*1 * = 'U': Upper triangular factor stored in AB; * = 'L': Lower triangular factor stored in AB. * * N (input) INTEGER * The order of the matrix A. N >= 0. * * KD (input) INTEGER * The number of superdiagonals of the matrix A if UPLO = 'U', * or the number of subdiagonals if UPLO = 'L'. KD >= 0. * * NRHS (input) INTEGER * The number of right hand sides, i.e., the number of columns * of the matrix B. NRHS >= 0. * * AB (input) COMPLEX array, dimension (LDAB,N) * The triangular factor U or L from the Cholesky factorization * A = U**H*U or A = L*L**H of the band matrix A, stored in the * first KD+1 rows of the array. The j-th column of U or L is * stored in the j-th column of the array AB as follows: * if UPLO ='U', AB(kd+1+i-j,j) = U(i,j) for max(1,j-kd)<=i<=j; * if UPLO ='L', AB(1+i-j,j) = L(i,j) for j<=i<=min(n,j+kd). * * LDAB (input) INTEGER * The leading dimension of the array AB. LDAB >= KD+1. * * B (input/output) COMPLEX array, dimension (LDB,NRHS) * On entry, the right hand side matrix B. * On exit, the solution matrix X. * * LDB (input) INTEGER * The leading dimension of the array B. LDB >= max(1,N). * * INFO (output) INTEGER * = 0: successful exit * < 0: if INFO = -i, the i-th argument had an illegal value * * ===================================================================== * * .. Local Scalars .. LOGICAL UPPER INTEGER J * .. * .. External Functions .. LOGICAL LSAME EXTERNAL LSAME * .. * .. External Subroutines .. EXTERNAL CTBSV, XERBLA * .. * .. Intrinsic Functions .. INTRINSIC MAX * .. * .. Executable Statements .. * * Test the input parameters. * INFO = 0 UPPER = LSAME( UPLO, 'U' ) IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN INFO = -1 ELSE IF( N.LT.0 ) THEN INFO = -2 ELSE IF( KD.LT.0 ) THEN INFO = -3 ELSE IF( NRHS.LT.0 ) THEN INFO = -4 ELSE IF( LDAB.LT.KD+1 ) THEN INFO = -6 ELSE IF( LDB.LT.MAX( 1, N ) ) THEN INFO = -8 END IF IF( INFO.NE.0 ) THEN CALL XERBLA( 'CPBTRS', -INFO ) RETURN END IF * * Quick return if possible * IF( N.EQ.0 .OR. NRHS.EQ.0 ) \$ RETURN * IF( UPPER ) THEN * * Solve A*X = B where A = U'*U. * DO 10 J = 1, NRHS * * Solve U'*X = B, overwriting B with X. * CALL CTBSV( 'Upper', 'Conjugate transpose', 'Non-unit', N, \$ KD, AB, LDAB, B( 1, J ), 1 ) * * Solve U*X = B, overwriting B with X. * CALL CTBSV( 'Upper', 'No transpose', 'Non-unit', N, KD, AB, \$ LDAB, B( 1, J ), 1 ) 10 CONTINUE ELSE * * Solve A*X = B where A = L*L'. * DO 20 J = 1, NRHS * * Solve L*X = B, overwriting B with X. * CALL CTBSV( 'Lower', 'No transpose', 'Non-unit', N, KD, AB, \$ LDAB, B( 1, J ), 1 ) * * Solve L'*X = B, overwriting B with X. * CALL CTBSV( 'Lower', 'Conjugate transpose', 'Non-unit', N, \$ KD, AB, LDAB, B( 1, J ), 1 ) 20 CONTINUE END IF * RETURN * * End of CPBTRS * END