LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ dtpt03()

subroutine dtpt03 ( character uplo,
character trans,
character diag,
integer n,
integer nrhs,
double precision, dimension( * ) ap,
double precision scale,
double precision, dimension( * ) cnorm,
double precision tscal,
double precision, dimension( ldx, * ) x,
integer ldx,
double precision, dimension( ldb, * ) b,
integer ldb,
double precision, dimension( * ) work,
double precision resid )

DTPT03

Purpose:
!>
!> DTPT03 computes the residual for the solution to a scaled triangular
!> system of equations A*x = s*b  or  A'*x = s*b  when the triangular
!> matrix A is stored in packed format.  Here A' is the transpose of A,
!> s is a scalar, and x and b are N by NRHS matrices.  The test ratio is
!> the maximum over the number of right hand sides of
!>    norm(s*b - op(A)*x) / ( norm(op(A)) * norm(x) * EPS ),
!> where op(A) denotes A or A' and EPS is the machine epsilon.
!> 
Parameters
[in]UPLO
!>          UPLO is CHARACTER*1
!>          Specifies whether the matrix A is upper or lower triangular.
!>          = 'U':  Upper triangular
!>          = 'L':  Lower triangular
!> 
[in]TRANS
!>          TRANS is CHARACTER*1
!>          Specifies the operation applied to A.
!>          = 'N':  A *x = s*b  (No transpose)
!>          = 'T':  A'*x = s*b  (Transpose)
!>          = 'C':  A'*x = s*b  (Conjugate transpose = Transpose)
!> 
[in]DIAG
!>          DIAG is CHARACTER*1
!>          Specifies whether or not the matrix A is unit triangular.
!>          = 'N':  Non-unit triangular
!>          = 'U':  Unit triangular
!> 
[in]N
!>          N is INTEGER
!>          The order of the matrix A.  N >= 0.
!> 
[in]NRHS
!>          NRHS is INTEGER
!>          The number of right hand sides, i.e., the number of columns
!>          of the matrices X and B.  NRHS >= 0.
!> 
[in]AP
!>          AP is DOUBLE PRECISION array, dimension (N*(N+1)/2)
!>          The upper or lower triangular matrix A, packed columnwise in
!>          a linear array.  The j-th column of A is stored in the array
!>          AP as follows:
!>          if UPLO = 'U', AP((j-1)*j/2 + i) = A(i,j) for 1<=i<=j;
!>          if UPLO = 'L',
!>             AP((j-1)*(n-j) + j*(j+1)/2 + i-j) = A(i,j) for j<=i<=n.
!> 
[in]SCALE
!>          SCALE is DOUBLE PRECISION
!>          The scaling factor s used in solving the triangular system.
!> 
[in]CNORM
!>          CNORM is DOUBLE PRECISION array, dimension (N)
!>          The 1-norms of the columns of A, not counting the diagonal.
!> 
[in]TSCAL
!>          TSCAL is DOUBLE PRECISION
!>          The scaling factor used in computing the 1-norms in CNORM.
!>          CNORM actually contains the column norms of TSCAL*A.
!> 
[in]X
!>          X is DOUBLE PRECISION array, dimension (LDX,NRHS)
!>          The computed solution vectors for the system of linear
!>          equations.
!> 
[in]LDX
!>          LDX is INTEGER
!>          The leading dimension of the array X.  LDX >= max(1,N).
!> 
[in]B
!>          B is DOUBLE PRECISION array, dimension (LDB,NRHS)
!>          The right hand side vectors for the system of linear
!>          equations.
!> 
[in]LDB
!>          LDB is INTEGER
!>          The leading dimension of the array B.  LDB >= max(1,N).
!> 
[out]WORK
!>          WORK is DOUBLE PRECISION array, dimension (N)
!> 
[out]RESID
!>          RESID is DOUBLE PRECISION
!>          The maximum over the number of right hand sides of
!>          norm(op(A)*x - s*b) / ( norm(op(A)) * norm(x) * EPS ).
!> 
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 159 of file dtpt03.f.

161*
162* -- LAPACK test routine --
163* -- LAPACK is a software package provided by Univ. of Tennessee, --
164* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
165*
166* .. Scalar Arguments ..
167 CHARACTER DIAG, TRANS, UPLO
168 INTEGER LDB, LDX, N, NRHS
169 DOUBLE PRECISION RESID, SCALE, TSCAL
170* ..
171* .. Array Arguments ..
172 DOUBLE PRECISION AP( * ), B( LDB, * ), CNORM( * ), WORK( * ),
173 $ X( LDX, * )
174* ..
175*
176* =====================================================================
177*
178* .. Parameters ..
179 DOUBLE PRECISION ONE, ZERO
180 parameter( one = 1.0d+0, zero = 0.0d+0 )
181* ..
182* .. Local Scalars ..
183 INTEGER IX, J, JJ
184 DOUBLE PRECISION BIGNUM, EPS, ERR, SMLNUM, TNORM, XNORM, XSCAL
185* ..
186* .. External Functions ..
187 LOGICAL LSAME
188 INTEGER IDAMAX
189 DOUBLE PRECISION DLAMCH
190 EXTERNAL lsame, idamax, dlamch
191* ..
192* .. External Subroutines ..
193 EXTERNAL daxpy, dcopy, dscal, dtpmv
194* ..
195* .. Intrinsic Functions ..
196 INTRINSIC abs, dble, max
197* ..
198* .. Executable Statements ..
199*
200* Quick exit if N = 0.
201*
202 IF( n.LE.0 .OR. nrhs.LE.0 ) THEN
203 resid = zero
204 RETURN
205 END IF
206 eps = dlamch( 'Epsilon' )
207 smlnum = dlamch( 'Safe minimum' )
208 bignum = one / smlnum
209*
210* Compute the norm of the triangular matrix A using the column
211* norms already computed by DLATPS.
212*
213 tnorm = zero
214 IF( lsame( diag, 'N' ) ) THEN
215 IF( lsame( uplo, 'U' ) ) THEN
216 jj = 1
217 DO 10 j = 1, n
218 tnorm = max( tnorm, tscal*abs( ap( jj ) )+cnorm( j ) )
219 jj = jj + j + 1
220 10 CONTINUE
221 ELSE
222 jj = 1
223 DO 20 j = 1, n
224 tnorm = max( tnorm, tscal*abs( ap( jj ) )+cnorm( j ) )
225 jj = jj + n - j + 1
226 20 CONTINUE
227 END IF
228 ELSE
229 DO 30 j = 1, n
230 tnorm = max( tnorm, tscal+cnorm( j ) )
231 30 CONTINUE
232 END IF
233*
234* Compute the maximum over the number of right hand sides of
235* norm(op(A)*x - s*b) / ( norm(op(A)) * norm(x) * EPS ).
236*
237 resid = zero
238 DO 40 j = 1, nrhs
239 CALL dcopy( n, x( 1, j ), 1, work, 1 )
240 ix = idamax( n, work, 1 )
241 xnorm = max( one, abs( x( ix, j ) ) )
242 xscal = ( one / xnorm ) / dble( n )
243 CALL dscal( n, xscal, work, 1 )
244 CALL dtpmv( uplo, trans, diag, n, ap, work, 1 )
245 CALL daxpy( n, -scale*xscal, b( 1, j ), 1, work, 1 )
246 ix = idamax( n, work, 1 )
247 err = tscal*abs( work( ix ) )
248 ix = idamax( n, x( 1, j ), 1 )
249 xnorm = abs( x( ix, j ) )
250 IF( err*smlnum.LE.xnorm ) THEN
251 IF( xnorm.GT.zero )
252 $ err = err / xnorm
253 ELSE
254 IF( err.GT.zero )
255 $ err = one / eps
256 END IF
257 IF( err*smlnum.LE.tnorm ) THEN
258 IF( tnorm.GT.zero )
259 $ err = err / tnorm
260 ELSE
261 IF( err.GT.zero )
262 $ err = one / eps
263 END IF
264 resid = max( resid, err )
265 40 CONTINUE
266*
267 RETURN
268*
269* End of DTPT03
270*
subroutine daxpy(n, da, dx, incx, dy, incy)
DAXPY
Definition daxpy.f:89
subroutine dcopy(n, dx, incx, dy, incy)
DCOPY
Definition dcopy.f:82
integer function idamax(n, dx, incx)
IDAMAX
Definition idamax.f:71
double precision function dlamch(cmach)
DLAMCH
Definition dlamch.f:69
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48
subroutine dscal(n, da, dx, incx)
DSCAL
Definition dscal.f:79
subroutine dtpmv(uplo, trans, diag, n, ap, x, incx)
DTPMV
Definition dtpmv.f:142
Here is the call graph for this function:
Here is the caller graph for this function: