LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ sgedmdq()

subroutine sgedmdq ( character, intent(in) jobs,
character, intent(in) jobz,
character, intent(in) jobr,
character, intent(in) jobq,
character, intent(in) jobt,
character, intent(in) jobf,
integer, intent(in) whtsvd,
integer, intent(in) m,
integer, intent(in) n,
real(kind=wp), dimension(ldf,*), intent(inout) f,
integer, intent(in) ldf,
real(kind=wp), dimension(ldx,*), intent(out) x,
integer, intent(in) ldx,
real(kind=wp), dimension(ldy,*), intent(out) y,
integer, intent(in) ldy,
integer, intent(in) nrnk,
real(kind=wp), intent(in) tol,
integer, intent(out) k,
real(kind=wp), dimension(*), intent(out) reig,
real(kind=wp), dimension(*), intent(out) imeig,
real(kind=wp), dimension(ldz,*), intent(out) z,
integer, intent(in) ldz,
real(kind=wp), dimension(*), intent(out) res,
real(kind=wp), dimension(ldb,*), intent(out) b,
integer, intent(in) ldb,
real(kind=wp), dimension(ldv,*), intent(out) v,
integer, intent(in) ldv,
real(kind=wp), dimension(lds,*), intent(out) s,
integer, intent(in) lds,
real(kind=wp), dimension(*), intent(out) work,
integer, intent(in) lwork,
integer, dimension(*), intent(out) iwork,
integer, intent(in) liwork,
integer, intent(out) info )

SGEDMDQ computes the Dynamic Mode Decomposition (DMD) for a pair of data snapshot matrices.

Purpose:
!>    SGEDMDQ computes the Dynamic Mode Decomposition (DMD) for
!>    a pair of data snapshot matrices, using a QR factorization
!>    based compression of the data. For the input matrices
!>    X and Y such that Y = A*X with an unaccessible matrix
!>    A, SGEDMDQ computes a certain number of Ritz pairs of A using
!>    the standard Rayleigh-Ritz extraction from a subspace of
!>    range(X) that is determined using the leading left singular
!>    vectors of X. Optionally, SGEDMDQ returns the residuals
!>    of the computed Ritz pairs, the information needed for
!>    a refinement of the Ritz vectors, or the eigenvectors of
!>    the Exact DMD.
!>    For further details see the references listed
!>    below. For more details of the implementation see [3].
!>    
References:
!>    [1] P. Schmid: Dynamic mode decomposition of numerical
!>        and experimental data,
!>        Journal of Fluid Mechanics 656, 5-28, 2010.
!>    [2] Z. Drmac, I. Mezic, R. Mohr: Data driven modal
!>        decompositions: analysis and enhancements,
!>        SIAM J. on Sci. Comp. 40 (4), A2253-A2285, 2018.
!>    [3] Z. Drmac: A LAPACK implementation of the Dynamic
!>        Mode Decomposition I. Technical report. AIMDyn Inc.
!>        and LAPACK Working Note 298.
!>    [4] J. Tu, C. W. Rowley, D. M. Luchtenburg, S. L.
!>        Brunton, N. Kutz: On Dynamic Mode Decomposition:
!>        Theory and Applications, Journal of Computational
!>        Dynamics 1(2), 391 -421, 2014.
!>    
Developed and supported by:
!>    Developed and coded by Zlatko Drmac, Faculty of Science,
!>    University of Zagreb;  drmac@math.hr
!>    In cooperation with
!>    AIMdyn Inc., Santa Barbara, CA.
!>    and supported by
!>    - DARPA SBIR project  Contract No: W31P4Q-21-C-0007
!>    - DARPA PAI project  Contract No: HR0011-18-9-0033
!>    - DARPA MoDyL project 
!>    Contract No: HR0011-16-C-0116
!>    Any opinions, findings and conclusions or recommendations
!>    expressed in this material are those of the author and
!>    do not necessarily reflect the views of the DARPA SBIR
!>    Program Office.
!>    
Distribution Statement A:
!>    Approved for Public Release, Distribution Unlimited.
!>    Cleared by DARPA on September 29, 2022
!>    
Parameters
[in]JOBS
!>    JOBS (input) CHARACTER*1
!>    Determines whether the initial data snapshots are scaled
!>    by a diagonal matrix. The data snapshots are the columns
!>    of F. The leading N-1 columns of F are denoted X and the
!>    trailing N-1 columns are denoted Y.
!>    'S' :: The data snapshots matrices X and Y are multiplied
!>           with a diagonal matrix D so that X*D has unit
!>           nonzero columns (in the Euclidean 2-norm)
!>    'C' :: The snapshots are scaled as with the 'S' option.
!>           If it is found that an i-th column of X is zero
!>           vector and the corresponding i-th column of Y is
!>           non-zero, then the i-th column of Y is set to
!>           zero and a warning flag is raised.
!>    'Y' :: The data snapshots matrices X and Y are multiplied
!>           by a diagonal matrix D so that Y*D has unit
!>           nonzero columns (in the Euclidean 2-norm)
!>    'N' :: No data scaling.
!>    
[in]JOBZ
!>    JOBZ (input) CHARACTER*1
!>    Determines whether the eigenvectors (Koopman modes) will
!>    be computed.
!>    'V' :: The eigenvectors (Koopman modes) will be computed
!>           and returned in the matrix Z.
!>           See the description of Z.
!>    'F' :: The eigenvectors (Koopman modes) will be returned
!>           in factored form as the product Z*V, where Z
!>           is orthonormal and V contains the eigenvectors
!>           of the corresponding Rayleigh quotient.
!>           See the descriptions of F, V, Z.
!>    'Q' :: The eigenvectors (Koopman modes) will be returned
!>           in factored form as the product Q*Z, where Z
!>           contains the eigenvectors of the compression of the
!>           underlying discretized operator onto the span of
!>           the data snapshots. See the descriptions of F, V, Z.
!>           Q is from the initial QR factorization.
!>    'N' :: The eigenvectors are not computed.
!>    
[in]JOBR
!>    JOBR (input) CHARACTER*1
!>    Determines whether to compute the residuals.
!>    'R' :: The residuals for the computed eigenpairs will
!>           be computed and stored in the array RES.
!>           See the description of RES.
!>           For this option to be legal, JOBZ must be 'V'.
!>    'N' :: The residuals are not computed.
!>    
[in]JOBQ
!>    JOBQ (input) CHARACTER*1
!>    Specifies whether to explicitly compute and return the
!>    orthogonal matrix from the QR factorization.
!>    'Q' :: The matrix Q of the QR factorization of the data
!>           snapshot matrix is computed and stored in the
!>           array F. See the description of F.
!>    'N' :: The matrix Q is not explicitly computed.
!>    
[in]JOBT
!>    JOBT (input) CHARACTER*1
!>    Specifies whether to return the upper triangular factor
!>    from the QR factorization.
!>    'R' :: The matrix R of the QR factorization of the data
!>           snapshot matrix F is returned in the array Y.
!>           See the description of Y and Further details.
!>    'N' :: The matrix R is not returned.
!>    
[in]JOBF
!>    JOBF (input) CHARACTER*1
!>    Specifies whether to store information needed for post-
!>    processing (e.g. computing refined Ritz vectors)
!>    'R' :: The matrix needed for the refinement of the Ritz
!>           vectors is computed and stored in the array B.
!>           See the description of B.
!>    'E' :: The unscaled eigenvectors of the Exact DMD are
!>           computed and returned in the array B. See the
!>           description of B.
!>    'N' :: No eigenvector refinement data is computed.
!>    To be useful on exit, this option needs JOBQ='Q'.
!>    
[in]WHTSVD
!>    WHTSVD (input) INTEGER, WHSTVD in { 1, 2, 3, 4 }
!>    Allows for a selection of the SVD algorithm from the
!>    LAPACK library.
!>    1 :: SGESVD (the QR SVD algorithm)
!>    2 :: SGESDD (the Divide and Conquer algorithm; if enough
!>         workspace available, this is the fastest option)
!>    3 :: SGESVDQ (the preconditioned QR SVD  ; this and 4
!>         are the most accurate options)
!>    4 :: SGEJSV (the preconditioned Jacobi SVD; this and 3
!>         are the most accurate options)
!>    For the four methods above, a significant difference in
!>    the accuracy of small singular values is possible if
!>    the snapshots vary in norm so that X is severely
!>    ill-conditioned. If small (smaller than EPS*||X||)
!>    singular values are of interest and JOBS=='N',  then
!>    the options (3, 4) give the most accurate results, where
!>    the option 4 is slightly better and with stronger
!>    theoretical background.
!>    If JOBS=='S', i.e. the columns of X will be normalized,
!>    then all methods give nearly equally accurate results.
!>    
[in]M
!>    M (input) INTEGER, M >= 0
!>    The state space dimension (the number of rows of F)
!>    
[in]N
!>    N (input) INTEGER, 0 <= N <= M
!>    The number of data snapshots from a single trajectory,
!>    taken at equidistant discrete times. This is the
!>    number of columns of F.
!>    
[in,out]F
!>    F (input/output) REAL(KIND=WP) M-by-N array
!>    > On entry,
!>    the columns of F are the sequence of data snapshots
!>    from a single trajectory, taken at equidistant discrete
!>    times. It is assumed that the column norms of F are
!>    in the range of the normalized floating point numbers.
!>    < On exit,
!>    If JOBQ == 'Q', the array F contains the orthogonal
!>    matrix/factor of the QR factorization of the initial
!>    data snapshots matrix F. See the description of JOBQ.
!>    If JOBQ == 'N', the entries in F strictly below the main
!>    diagonal contain, column-wise, the information on the
!>    Householder vectors, as returned by SGEQRF. The
!>    remaining information to restore the orthogonal matrix
!>    of the initial QR factorization is stored in WORK(1:N).
!>    See the description of WORK.
!>    
[in]LDF
!>    LDF (input) INTEGER, LDF >= M
!>    The leading dimension of the array F.
!>    
[in,out]X
!>    X (workspace/output) REAL(KIND=WP) MIN(M,N)-by-(N-1) array
!>    X is used as workspace to hold representations of the
!>    leading N-1 snapshots in the orthonormal basis computed
!>    in the QR factorization of F.
!>    On exit, the leading K columns of X contain the leading
!>    K left singular vectors of the above described content
!>    of X. To lift them to the space of the left singular
!>    vectors U(:,1:K)of the input data, pre-multiply with the
!>    Q factor from the initial QR factorization.
!>    See the descriptions of F, K, V  and Z.
!>    
[in]LDX
!>    LDX (input) INTEGER, LDX >= N
!>    The leading dimension of the array X
!>    
[in,out]Y
!>    Y (workspace/output) REAL(KIND=WP) MIN(M,N)-by-(N-1) array
!>    Y is used as workspace to hold representations of the
!>    trailing N-1 snapshots in the orthonormal basis computed
!>    in the QR factorization of F.
!>    On exit,
!>    If JOBT == 'R', Y contains the MIN(M,N)-by-N upper
!>    triangular factor from the QR factorization of the data
!>    snapshot matrix F.
!>    
[in]LDY
!>    LDY (input) INTEGER , LDY >= N
!>    The leading dimension of the array Y
!>    
[in]NRNK
!>    NRNK (input) INTEGER
!>    Determines the mode how to compute the numerical rank,
!>    i.e. how to truncate small singular values of the input
!>    matrix X. On input, if
!>    NRNK = -1 :: i-th singular value sigma(i) is truncated
!>                 if sigma(i) <= TOL*sigma(1)
!>                 This option is recommended.
!>    NRNK = -2 :: i-th singular value sigma(i) is truncated
!>                 if sigma(i) <= TOL*sigma(i-1)
!>                 This option is included for R&D purposes.
!>                 It requires highly accurate SVD, which
!>                 may not be feasible.
!>    The numerical rank can be enforced by using positive
!>    value of NRNK as follows:
!>    0 < NRNK <= N-1 :: at most NRNK largest singular values
!>    will be used. If the number of the computed nonzero
!>    singular values is less than NRNK, then only those
!>    nonzero values will be used and the actually used
!>    dimension is less than NRNK. The actual number of
!>    the nonzero singular values is returned in the variable
!>    K. See the description of K.
!>    
[in]TOL
!>    TOL (input) REAL(KIND=WP), 0 <= TOL < 1
!>    The tolerance for truncating small singular values.
!>    See the description of NRNK.
!>    
[out]K
!>    K (output) INTEGER,  0 <= K <= N
!>    The dimension of the SVD/POD basis for the leading N-1
!>    data snapshots (columns of F) and the number of the
!>    computed Ritz pairs. The value of K is determined
!>    according to the rule set by the parameters NRNK and
!>    TOL. See the descriptions of NRNK and TOL.
!>    
[out]REIG
!>    REIG (output) REAL(KIND=WP) (N-1)-by-1 array
!>    The leading K (K<=N) entries of REIG contain
!>    the real parts of the computed eigenvalues
!>    REIG(1:K) + sqrt(-1)*IMEIG(1:K).
!>    See the descriptions of K, IMEIG, Z.
!>    
[out]IMEIG
!>    IMEIG (output) REAL(KIND=WP) (N-1)-by-1 array
!>    The leading K (K<N) entries of REIG contain
!>    the imaginary parts of the computed eigenvalues
!>    REIG(1:K) + sqrt(-1)*IMEIG(1:K).
!>    The eigenvalues are determined as follows:
!>    If IMEIG(i) == 0, then the corresponding eigenvalue is
!>    real, LAMBDA(i) = REIG(i).
!>    If IMEIG(i)>0, then the corresponding complex
!>    conjugate pair of eigenvalues reads
!>    LAMBDA(i)   = REIG(i) + sqrt(-1)*IMAG(i)
!>    LAMBDA(i+1) = REIG(i) - sqrt(-1)*IMAG(i)
!>    That is, complex conjugate pairs have consecutive
!>    indices (i,i+1), with the positive imaginary part
!>    listed first.
!>    See the descriptions of K, REIG, Z.
!>    
[out]Z
!>    Z (workspace/output) REAL(KIND=WP)  M-by-(N-1) array
!>    If JOBZ =='V' then
!>       Z contains real Ritz vectors as follows:
!>       If IMEIG(i)=0, then Z(:,i) is an eigenvector of
!>       the i-th Ritz value.
!>       If IMEIG(i) > 0 (and IMEIG(i+1) < 0) then
!>       [Z(:,i) Z(:,i+1)] span an invariant subspace and
!>       the Ritz values extracted from this subspace are
!>       REIG(i) + sqrt(-1)*IMEIG(i) and
!>       REIG(i) - sqrt(-1)*IMEIG(i).
!>       The corresponding eigenvectors are
!>       Z(:,i) + sqrt(-1)*Z(:,i+1) and
!>       Z(:,i) - sqrt(-1)*Z(:,i+1), respectively.
!>    If JOBZ == 'F', then the above descriptions hold for
!>    the columns of Z*V, where the columns of V are the
!>    eigenvectors of the K-by-K Rayleigh quotient, and Z is
!>    orthonormal. The columns of V are similarly structured:
!>    If IMEIG(i) == 0 then Z*V(:,i) is an eigenvector, and if
!>    IMEIG(i) > 0 then Z*V(:,i)+sqrt(-1)*Z*V(:,i+1) and
!>                      Z*V(:,i)-sqrt(-1)*Z*V(:,i+1)
!>    are the eigenvectors of LAMBDA(i), LAMBDA(i+1).
!>    See the descriptions of REIG, IMEIG, X and V.
!>    
[in]LDZ
!>    LDZ (input) INTEGER , LDZ >= M
!>    The leading dimension of the array Z.
!>    
[out]RES
!>    RES (output) REAL(KIND=WP) (N-1)-by-1 array
!>    RES(1:K) contains the residuals for the K computed
!>    Ritz pairs.
!>    If LAMBDA(i) is real, then
!>       RES(i) = || A * Z(:,i) - LAMBDA(i)*Z(:,i))||_2.
!>    If [LAMBDA(i), LAMBDA(i+1)] is a complex conjugate pair
!>    then
!>    RES(i)=RES(i+1) = || A * Z(:,i:i+1) - Z(:,i:i+1) *B||_F
!>    where B = [ real(LAMBDA(i)) imag(LAMBDA(i)) ]
!>              [-imag(LAMBDA(i)) real(LAMBDA(i)) ].
!>    It holds that
!>    RES(i)   = || A*ZC(:,i)   - LAMBDA(i)  *ZC(:,i)   ||_2
!>    RES(i+1) = || A*ZC(:,i+1) - LAMBDA(i+1)*ZC(:,i+1) ||_2
!>    where ZC(:,i)   =  Z(:,i) + sqrt(-1)*Z(:,i+1)
!>          ZC(:,i+1) =  Z(:,i) - sqrt(-1)*Z(:,i+1)
!>    See the description of Z.
!>    
[out]B
!>    B (output) REAL(KIND=WP)  MIN(M,N)-by-(N-1) array.
!>    IF JOBF =='R', B(1:N,1:K) contains A*U(:,1:K), and can
!>    be used for computing the refined vectors; see further
!>    details in the provided references.
!>    If JOBF == 'E', B(1:N,1;K) contains
!>    A*U(:,1:K)*W(1:K,1:K), which are the vectors from the
!>    Exact DMD, up to scaling by the inverse eigenvalues.
!>    In both cases, the content of B can be lifted to the
!>    original dimension of the input data by pre-multiplying
!>    with the Q factor from the initial QR factorization.
!>    Here A denotes a compression of the underlying operator.
!>    See the descriptions of F and X.
!>    If JOBF =='N', then B is not referenced.
!>    
[in]LDB
!>    LDB (input) INTEGER, LDB >= MIN(M,N)
!>    The leading dimension of the array B.
!>    
[out]V
!>    V (workspace/output) REAL(KIND=WP) (N-1)-by-(N-1) array
!>    On exit, V(1:K,1:K) contains the K eigenvectors of
!>    the Rayleigh quotient. The eigenvectors of a complex
!>    conjugate pair of eigenvalues are returned in real form
!>    as explained in the description of Z. The Ritz vectors
!>    (returned in Z) are the product of X and V; see
!>    the descriptions of X and Z.
!>    
[in]LDV
!>    LDV (input) INTEGER, LDV >= N-1
!>    The leading dimension of the array V.
!>    
[out]S
!>    S (output) REAL(KIND=WP) (N-1)-by-(N-1) array
!>    The array S(1:K,1:K) is used for the matrix Rayleigh
!>    quotient. This content is overwritten during
!>    the eigenvalue decomposition by SGEEV.
!>    See the description of K.
!>    
[in]LDS
!>    LDS (input) INTEGER, LDS >= N-1
!>    The leading dimension of the array S.
!>    
[out]WORK
!>    WORK (workspace/output) REAL(KIND=WP) LWORK-by-1 array
!>    On exit,
!>    WORK(1:MIN(M,N)) contains the scalar factors of the
!>    elementary reflectors as returned by SGEQRF of the
!>    M-by-N input matrix F.
!>    WORK(MIN(M,N)+1:MIN(M,N)+N-1) contains the singular values of
!>    the input submatrix F(1:M,1:N-1).
!>    If the call to SGEDMDQ is only workspace query, then
!>    WORK(1) contains the minimal workspace length and
!>    WORK(2) is the optimal workspace length. Hence, the
!>    length of work is at least 2.
!>    See the description of LWORK.
!>    
[in]LWORK
!>    LWORK (input) INTEGER
!>    The minimal length of the  workspace vector WORK.
!>    LWORK is calculated as follows:
!>    Let MLWQR  = N (minimal workspace for SGEQRF[M,N])
!>        MLWDMD = minimal workspace for SGEDMD (see the
!>                 description of LWORK in SGEDMD) for
!>                 snapshots of dimensions MIN(M,N)-by-(N-1)
!>        MLWMQR = N (minimal workspace for
!>                   SORMQR['L','N',M,N,N])
!>        MLWGQR = N (minimal workspace for SORGQR[M,N,N])
!>    Then
!>    LWORK = MAX(N+MLWQR, N+MLWDMD)
!>    is updated as follows:
!>       if   JOBZ == 'V' or JOBZ == 'F' THEN
!>            LWORK = MAX( LWORK,MIN(M,N)+N-1 +MLWMQR )
!>       if   JOBQ == 'Q' THEN
!>            LWORK = MAX( LWORK,MIN(M,N)+N-1+MLWGQR)
!>    If on entry LWORK = -1, then a workspace query is
!>    assumed and the procedure only computes the minimal
!>    and the optimal workspace lengths for both WORK and
!>    IWORK. See the descriptions of WORK and IWORK.
!>    
[out]IWORK
!>    IWORK (workspace/output) INTEGER LIWORK-by-1 array
!>    Workspace that is required only if WHTSVD equals
!>    2 , 3 or 4. (See the description of WHTSVD).
!>    If on entry LWORK =-1 or LIWORK=-1, then the
!>    minimal length of IWORK is computed and returned in
!>    IWORK(1). See the description of LIWORK.
!>    
[in]LIWORK
!>    LIWORK (input) INTEGER
!>    The minimal length of the workspace vector IWORK.
!>    If WHTSVD == 1, then only IWORK(1) is used; LIWORK >=1
!>    Let M1=MIN(M,N), N1=N-1. Then
!>    If WHTSVD == 2, then LIWORK >= MAX(1,8*MIN(M1,N1))
!>    If WHTSVD == 3, then LIWORK >= MAX(1,M1+N1-1)
!>    If WHTSVD == 4, then LIWORK >= MAX(3,M1+3*N1)
!>    If on entry LIWORK = -1, then a worskpace query is
!>    assumed and the procedure only computes the minimal
!>    and the optimal workspace lengths for both WORK and
!>    IWORK. See the descriptions of WORK and IWORK.
!>    
[out]INFO
!>    INFO (output) INTEGER
!>    -i < 0 :: On entry, the i-th argument had an
!>              illegal value
!>       = 0 :: Successful return.
!>       = 1 :: Void input. Quick exit (M=0 or N=0).
!>       = 2 :: The SVD computation of X did not converge.
!>              Suggestion: Check the input data and/or
!>              repeat with different WHTSVD.
!>       = 3 :: The computation of the eigenvalues did not
!>              converge.
!>       = 4 :: If data scaling was requested on input and
!>              the procedure found inconsistency in the data
!>              such that for some column index i,
!>              X(:,i) = 0 but Y(:,i) /= 0, then Y(:,i) is set
!>              to zero if JOBS=='C'. The computation proceeds
!>              with original or modified data and warning
!>              flag is set with INFO=4.
!>    
Author
Zlatko Drmac

Definition at line 571 of file sgedmdq.f90.

576!
577! -- LAPACK driver routine --
578!
579! -- LAPACK is a software package provided by University of --
580! -- Tennessee, University of California Berkeley, University of --
581! -- Colorado Denver and NAG Ltd.. --
582!
583!.....
584 use, INTRINSIC :: iso_fortran_env, only: real32
585 IMPLICIT NONE
586 INTEGER, PARAMETER :: WP = real32
587!
588! Scalar arguments
589! ~~~~~~~~~~~~~~~~
590 CHARACTER, INTENT(IN) :: JOBS, JOBZ, JOBR, JOBQ, &
591 jobt, jobf
592 INTEGER, INTENT(IN) :: WHTSVD, M, N, LDF, LDX, &
593 ldy, nrnk, ldz, ldb, ldv, &
594 lds, lwork, liwork
595 INTEGER, INTENT(OUT) :: INFO, K
596 REAL(KIND=wp), INTENT(IN) :: tol
597!
598! Array arguments
599! ~~~~~~~~~~~~~~~~
600 REAL(KIND=wp), INTENT(INOUT) :: f(ldf,*)
601 REAL(KIND=wp), INTENT(OUT) :: x(ldx,*), y(ldy,*), &
602 z(ldz,*), b(ldb,*), &
603 v(ldv,*), s(lds,*)
604 REAL(KIND=wp), INTENT(OUT) :: reig(*), imeig(*), &
605 res(*)
606 REAL(KIND=wp), INTENT(OUT) :: work(*)
607 INTEGER, INTENT(OUT) :: IWORK(*)
608!
609! Parameters
610! ~~~~~~~~~~
611 REAL(KIND=wp), PARAMETER :: one = 1.0_wp
612 REAL(KIND=wp), PARAMETER :: zero = 0.0_wp
613!
614! Local scalars
615! ~~~~~~~~~~~~~
616 INTEGER :: IMINWR, INFO1, MLWDMD, MLWGQR, &
617 mlwmqr, mlwork, mlwqr, minmn, &
618 olwdmd, olwgqr, olwmqr, olwork, &
619 olwqr
620 LOGICAL :: LQUERY, SCCOLX, SCCOLY, WANTQ, &
621 wnttrf, wntres, wntvec, wntvcf, &
622 wntvcq, wntref, wntex
623 CHARACTER(LEN=1) :: JOBVL
624!
625! Local array
626! ~~~~~~~~~~~
627 REAL(KIND=wp) :: rdummy(2)
628!
629! External functions (BLAS and LAPACK)
630! ~~~~~~~~~~~~~~~~~
631 LOGICAL LSAME
632 EXTERNAL lsame
633!
634! External subroutines (BLAS and LAPACK)
635! ~~~~~~~~~~~~~~~~~~~~
636 EXTERNAL sgemm
637 EXTERNAL sgedmd, sgeqrf, slacpy, slaset, sorgqr, &
639!
640! Intrinsic functions
641! ~~~~~~~~~~~~~~~~~~~
642 INTRINSIC max, min, int
643!..........................................................
644!
645! Test the input arguments
646 wntres = lsame(jobr,'R')
647 sccolx = lsame(jobs,'S') .OR. lsame( jobs, 'C' )
648 sccoly = lsame(jobs,'Y')
649 wntvec = lsame(jobz,'V')
650 wntvcf = lsame(jobz,'F')
651 wntvcq = lsame(jobz,'Q')
652 wntref = lsame(jobf,'R')
653 wntex = lsame(jobf,'E')
654 wantq = lsame(jobq,'Q')
655 wnttrf = lsame(jobt,'R')
656 minmn = min(m,n)
657 info = 0
658 lquery = ( ( lwork == -1 ) .OR. ( liwork == -1 ) )
659!
660 IF ( .NOT. (sccolx .OR. sccoly .OR. lsame(jobs,'N')) ) THEN
661 info = -1
662 ELSE IF ( .NOT. (wntvec .OR. wntvcf .OR. wntvcq &
663 .OR. lsame(jobz,'N')) ) THEN
664 info = -2
665 ELSE IF ( .NOT. (wntres .OR. lsame(jobr,'N')) .OR. &
666 ( wntres .AND. lsame(jobz,'N') ) ) THEN
667 info = -3
668 ELSE IF ( .NOT. (wantq .OR. lsame(jobq,'N')) ) THEN
669 info = -4
670 ELSE IF ( .NOT. ( wnttrf .OR. lsame(jobt,'N') ) ) THEN
671 info = -5
672 ELSE IF ( .NOT. (wntref .OR. wntex .OR. &
673 lsame(jobf,'N') ) ) THEN
674 info = -6
675 ELSE IF ( .NOT. ((whtsvd == 1).OR.(whtsvd == 2).OR. &
676 (whtsvd == 3).OR.(whtsvd == 4)) ) THEN
677 info = -7
678 ELSE IF ( m < 0 ) THEN
679 info = -8
680 ELSE IF ( ( n < 0 ) .OR. ( n > m+1 ) ) THEN
681 info = -9
682 ELSE IF ( ldf < m ) THEN
683 info = -11
684 ELSE IF ( ldx < minmn ) THEN
685 info = -13
686 ELSE IF ( ldy < minmn ) THEN
687 info = -15
688 ELSE IF ( .NOT. (( nrnk == -2).OR.(nrnk == -1).OR. &
689 ((nrnk >= 1).AND.(nrnk <=n ))) ) THEN
690 info = -16
691 ELSE IF ( ( tol < zero ) .OR. ( tol >= one ) ) THEN
692 info = -17
693 ELSE IF ( ldz < m ) THEN
694 info = -22
695 ELSE IF ( (wntref.OR.wntex ).AND.( ldb < minmn ) ) THEN
696 info = -25
697 ELSE IF ( ldv < n-1 ) THEN
698 info = -27
699 ELSE IF ( lds < n-1 ) THEN
700 info = -29
701 END IF
702!
703 IF ( wntvec .OR. wntvcf ) THEN
704 jobvl = 'V'
705 ELSE
706 jobvl = 'N'
707 END IF
708 IF ( info == 0 ) THEN
709 ! Compute the minimal and the optimal workspace
710 ! requirements. Simulate running the code and
711 ! determine minimal and optimal sizes of the
712 ! workspace at any moment of the run.
713 IF ( ( n == 0 ) .OR. ( n == 1 ) ) THEN
714 ! All output except K is void. INFO=1 signals
715 ! the void input. In case of a workspace query,
716 ! the minimal workspace lengths are returned.
717 IF ( lquery ) THEN
718 iwork(1) = 1
719 work(1) = 2
720 work(2) = 2
721 ELSE
722 k = 0
723 END IF
724 info = 1
725 RETURN
726 END IF
727 mlwqr = max(1,n) ! Minimal workspace length for SGEQRF.
728 mlwork = min(m,n) + mlwqr
729 IF ( lquery ) THEN
730 CALL sgeqrf( m, n, f, ldf, work, rdummy, -1, &
731 info1 )
732 olwqr = int(rdummy(1))
733 olwork = min(m,n) + olwqr
734 END IF
735 CALL sgedmd( jobs, jobvl, jobr, jobf, whtsvd, minmn,&
736 n-1, x, ldx, y, ldy, nrnk, tol, k, &
737 reig, imeig, z, ldz, res, b, ldb, &
738 v, ldv, s, lds, work, -1, iwork, &
739 liwork, info1 )
740 mlwdmd = int(work(1))
741 mlwork = max(mlwork, minmn + mlwdmd)
742 iminwr = iwork(1)
743 IF ( lquery ) THEN
744 olwdmd = int(work(2))
745 olwork = max(olwork, minmn+olwdmd)
746 END IF
747 IF ( wntvec .OR. wntvcf ) THEN
748 mlwmqr = max(1,n)
749 mlwork = max(mlwork,minmn+n-1+mlwmqr)
750 IF ( lquery ) THEN
751 CALL sormqr( 'L','N', m, n, minmn, f, ldf, &
752 work, z, ldz, work, -1, info1 )
753 olwmqr = int(work(1))
754 olwork = max(olwork,minmn+n-1+olwmqr)
755 END IF
756 END IF
757 IF ( wantq ) THEN
758 mlwgqr = n
759 mlwork = max(mlwork,minmn+n-1+mlwgqr)
760 IF ( lquery ) THEN
761 CALL sorgqr( m, minmn, minmn, f, ldf, work, &
762 work, -1, info1 )
763 olwgqr = int(work(1))
764 olwork = max(olwork,minmn+n-1+olwgqr)
765 END IF
766 END IF
767 iminwr = max( 1, iminwr )
768 mlwork = max( 2, mlwork )
769 IF ( lwork < mlwork .AND. (.NOT.lquery) ) info = -31
770 IF ( liwork < iminwr .AND. (.NOT.lquery) ) info = -33
771 END IF
772 IF( info /= 0 ) THEN
773 CALL xerbla( 'SGEDMDQ', -info )
774 RETURN
775 ELSE IF ( lquery ) THEN
776! Return minimal and optimal workspace sizes
777 iwork(1) = iminwr
778 work(1) = real(mlwork)
779 work(2) = real(olwork)
780 RETURN
781 END IF
782!.....
783! Initial QR factorization that is used to represent the
784! snapshots as elements of lower dimensional subspace.
785! For large scale computation with M >>N , at this place
786! one can use an out of core QRF.
787!
788 CALL sgeqrf( m, n, f, ldf, work, &
789 work(minmn+1), lwork-minmn, info1 )
790!
791! Define X and Y as the snapshots representations in the
792! orthogonal basis computed in the QR factorization.
793! X corresponds to the leading N-1 and Y to the trailing
794! N-1 snapshots.
795 CALL slaset( 'L', minmn, n-1, zero, zero, x, ldx )
796 CALL slacpy( 'U', minmn, n-1, f, ldf, x, ldx )
797 CALL slacpy( 'A', minmn, n-1, f(1,2), ldf, y, ldy )
798 IF ( m >= 3 ) THEN
799 CALL slaset( 'L', minmn-2, n-2, zero, zero, &
800 y(3,1), ldy )
801 END IF
802!
803! Compute the DMD of the projected snapshot pairs (X,Y)
804 CALL sgedmd( jobs, jobvl, jobr, jobf, whtsvd, minmn, &
805 n-1, x, ldx, y, ldy, nrnk, tol, k, &
806 reig, imeig, z, ldz, res, b, ldb, v, &
807 ldv, s, lds, work(minmn+1), lwork-minmn, iwork, &
808 liwork, info1 )
809 IF ( info1 == 2 .OR. info1 == 3 ) THEN
810 ! Return with error code.
811 info = info1
812 RETURN
813 ELSE
814 info = info1
815 END IF
816!
817! The Ritz vectors (Koopman modes) can be explicitly
818! formed or returned in factored form.
819 IF ( wntvec ) THEN
820 ! Compute the eigenvectors explicitly.
821 IF ( m > minmn ) CALL slaset( 'A', m-minmn, k, zero, &
822 zero, z(minmn+1,1), ldz )
823 CALL sormqr( 'L','N', m, k, minmn, f, ldf, work, z, &
824 ldz, work(minmn+n), lwork-(minmn+n-1), info1 )
825 ELSE IF ( wntvcf ) THEN
826 ! Return the Ritz vectors (eigenvectors) in factored
827 ! form Z*V, where Z contains orthonormal matrix (the
828 ! product of Q from the initial QR factorization and
829 ! the SVD/POD_basis returned by SGEDMD in X) and the
830 ! second factor (the eigenvectors of the Rayleigh
831 ! quotient) is in the array V, as returned by SGEDMD.
832 CALL slacpy( 'A', n, k, x, ldx, z, ldz )
833 IF ( m > n ) CALL slaset( 'A', m-n, k, zero, zero, &
834 z(n+1,1), ldz )
835 CALL sormqr( 'L','N', m, k, minmn, f, ldf, work, z, &
836 ldz, work(minmn+n), lwork-(minmn+n-1), info1 )
837 END IF
838!
839! Some optional output variables:
840!
841! The upper triangular factor in the initial QR
842! factorization is optionally returned in the array Y.
843! This is useful if this call to SGEDMDQ is to be
844! followed by a streaming DMD that is implemented in a
845! QR compressed form.
846 IF ( wnttrf ) THEN ! Return the upper triangular R in Y
847 CALL slaset( 'A', minmn, n, zero, zero, y, ldy )
848 CALL slacpy( 'U', minmn, n, f, ldf, y, ldy )
849 END IF
850!
851! The orthonormal/orthogonal factor in the initial QR
852! factorization is optionally returned in the array F.
853! Same as with the triangular factor above, this is
854! useful in a streaming DMD.
855 IF ( wantq ) THEN ! Q overwrites F
856 CALL sorgqr( m, minmn, minmn, f, ldf, work, &
857 work(minmn+n), lwork-(minmn+n-1), info1 )
858 END IF
859!
860 RETURN
861!
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine sgedmd(jobs, jobz, jobr, jobf, whtsvd, m, n, x, ldx, y, ldy, nrnk, tol, k, reig, imeig, z, ldz, res, b, ldb, w, ldw, s, lds, work, lwork, iwork, liwork, info)
SGEDMD computes the Dynamic Mode Decomposition (DMD) for a pair of data snapshot matrices.
Definition sgedmd.f90:535
subroutine sgemm(transa, transb, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc)
SGEMM
Definition sgemm.f:188
subroutine sgeqrf(m, n, a, lda, tau, work, lwork, info)
SGEQRF
Definition sgeqrf.f:144
subroutine slacpy(uplo, m, n, a, lda, b, ldb)
SLACPY copies all or part of one two-dimensional array to another.
Definition slacpy.f:101
subroutine slaset(uplo, m, n, alpha, beta, a, lda)
SLASET initializes the off-diagonal elements and the diagonal elements of a matrix to given values.
Definition slaset.f:108
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48
subroutine sorgqr(m, n, k, a, lda, tau, work, lwork, info)
SORGQR
Definition sorgqr.f:126
subroutine sormqr(side, trans, m, n, k, a, lda, tau, c, ldc, work, lwork, info)
SORMQR
Definition sormqr.f:166
Here is the call graph for this function: