LAPACK  3.10.0 LAPACK: Linear Algebra PACKage

## ◆ sdrvpp()

 subroutine sdrvpp ( logical, dimension( * ) DOTYPE, integer NN, integer, dimension( * ) NVAL, integer NRHS, real THRESH, logical TSTERR, integer NMAX, real, dimension( * ) A, real, dimension( * ) AFAC, real, dimension( * ) ASAV, real, dimension( * ) B, real, dimension( * ) BSAV, real, dimension( * ) X, real, dimension( * ) XACT, real, dimension( * ) S, real, dimension( * ) WORK, real, dimension( * ) RWORK, integer, dimension( * ) IWORK, integer NOUT )

SDRVPP

Purpose:
` SDRVPP tests the driver routines SPPSV and -SVX.`
Parameters
 [in] DOTYPE ``` DOTYPE is LOGICAL array, dimension (NTYPES) The matrix types to be used for testing. Matrices of type j (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) = .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.``` [in] NN ``` NN is INTEGER The number of values of N contained in the vector NVAL.``` [in] NVAL ``` NVAL is INTEGER array, dimension (NN) The values of the matrix dimension N.``` [in] NRHS ``` NRHS is INTEGER The number of right hand side vectors to be generated for each linear system.``` [in] THRESH ``` THRESH is REAL The threshold value for the test ratios. A result is included in the output file if RESULT >= THRESH. To have every test ratio printed, use THRESH = 0.``` [in] TSTERR ``` TSTERR is LOGICAL Flag that indicates whether error exits are to be tested.``` [in] NMAX ``` NMAX is INTEGER The maximum value permitted for N, used in dimensioning the work arrays.``` [out] A ``` A is REAL array, dimension (NMAX*(NMAX+1)/2)``` [out] AFAC ``` AFAC is REAL array, dimension (NMAX*(NMAX+1)/2)``` [out] ASAV ``` ASAV is REAL array, dimension (NMAX*(NMAX+1)/2)``` [out] B ` B is REAL array, dimension (NMAX*NRHS)` [out] BSAV ` BSAV is REAL array, dimension (NMAX*NRHS)` [out] X ` X is REAL array, dimension (NMAX*NRHS)` [out] XACT ` XACT is REAL array, dimension (NMAX*NRHS)` [out] S ` S is REAL array, dimension (NMAX)` [out] WORK ``` WORK is REAL array, dimension (NMAX*max(3,NRHS))``` [out] RWORK ` RWORK is REAL array, dimension (NMAX+2*NRHS)` [out] IWORK ` IWORK is INTEGER array, dimension (NMAX)` [in] NOUT ``` NOUT is INTEGER The unit number for output.```

Definition at line 164 of file sdrvpp.f.

167 *
168 * -- LAPACK test routine --
169 * -- LAPACK is a software package provided by Univ. of Tennessee, --
170 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
171 *
172 * .. Scalar Arguments ..
173  LOGICAL TSTERR
174  INTEGER NMAX, NN, NOUT, NRHS
175  REAL THRESH
176 * ..
177 * .. Array Arguments ..
178  LOGICAL DOTYPE( * )
179  INTEGER IWORK( * ), NVAL( * )
180  REAL A( * ), AFAC( * ), ASAV( * ), B( * ),
181  \$ BSAV( * ), RWORK( * ), S( * ), WORK( * ),
182  \$ X( * ), XACT( * )
183 * ..
184 *
185 * =====================================================================
186 *
187 * .. Parameters ..
188  REAL ONE, ZERO
189  parameter( one = 1.0e+0, zero = 0.0e+0 )
190  INTEGER NTYPES
191  parameter( ntypes = 9 )
192  INTEGER NTESTS
193  parameter( ntests = 6 )
194 * ..
195 * .. Local Scalars ..
196  LOGICAL EQUIL, NOFACT, PREFAC, ZEROT
197  CHARACTER DIST, EQUED, FACT, PACKIT, TYPE, UPLO, XTYPE
198  CHARACTER*3 PATH
199  INTEGER I, IEQUED, IFACT, IMAT, IN, INFO, IOFF, IUPLO,
200  \$ IZERO, K, K1, KL, KU, LDA, MODE, N, NERRS,
201  \$ NFACT, NFAIL, NIMAT, NPP, NRUN, NT
202  REAL AINVNM, AMAX, ANORM, CNDNUM, RCOND, RCONDC,
203  \$ ROLDC, SCOND
204 * ..
205 * .. Local Arrays ..
206  CHARACTER EQUEDS( 2 ), FACTS( 3 ), PACKS( 2 ), UPLOS( 2 )
207  INTEGER ISEED( 4 ), ISEEDY( 4 )
208  REAL RESULT( NTESTS )
209 * ..
210 * .. External Functions ..
211  LOGICAL LSAME
212  REAL SGET06, SLANSP
213  EXTERNAL lsame, sget06, slansp
214 * ..
215 * .. External Subroutines ..
216  EXTERNAL aladhd, alaerh, alasvm, scopy, serrvx, sget04,
219  \$ spptrf, spptri
220 * ..
221 * .. Scalars in Common ..
222  LOGICAL LERR, OK
223  CHARACTER*32 SRNAMT
224  INTEGER INFOT, NUNIT
225 * ..
226 * .. Common blocks ..
227  COMMON / infoc / infot, nunit, ok, lerr
228  COMMON / srnamc / srnamt
229 * ..
230 * .. Intrinsic Functions ..
231  INTRINSIC max
232 * ..
233 * .. Data statements ..
234  DATA iseedy / 1988, 1989, 1990, 1991 /
235  DATA uplos / 'U', 'L' / , facts / 'F', 'N', 'E' / ,
236  \$ packs / 'C', 'R' / , equeds / 'N', 'Y' /
237 * ..
238 * .. Executable Statements ..
239 *
240 * Initialize constants and the random number seed.
241 *
242  path( 1: 1 ) = 'Single precision'
243  path( 2: 3 ) = 'PP'
244  nrun = 0
245  nfail = 0
246  nerrs = 0
247  DO 10 i = 1, 4
248  iseed( i ) = iseedy( i )
249  10 CONTINUE
250 *
251 * Test the error exits
252 *
253  IF( tsterr )
254  \$ CALL serrvx( path, nout )
255  infot = 0
256 *
257 * Do for each value of N in NVAL
258 *
259  DO 140 in = 1, nn
260  n = nval( in )
261  lda = max( n, 1 )
262  npp = n*( n+1 ) / 2
263  xtype = 'N'
264  nimat = ntypes
265  IF( n.LE.0 )
266  \$ nimat = 1
267 *
268  DO 130 imat = 1, nimat
269 *
270 * Do the tests only if DOTYPE( IMAT ) is true.
271 *
272  IF( .NOT.dotype( imat ) )
273  \$ GO TO 130
274 *
275 * Skip types 3, 4, or 5 if the matrix size is too small.
276 *
277  zerot = imat.GE.3 .AND. imat.LE.5
278  IF( zerot .AND. n.LT.imat-2 )
279  \$ GO TO 130
280 *
281 * Do first for UPLO = 'U', then for UPLO = 'L'
282 *
283  DO 120 iuplo = 1, 2
284  uplo = uplos( iuplo )
285  packit = packs( iuplo )
286 *
287 * Set up parameters with SLATB4 and generate a test matrix
288 * with SLATMS.
289 *
290  CALL slatb4( path, imat, n, n, TYPE, KL, KU, ANORM, MODE,
291  \$ CNDNUM, DIST )
292  rcondc = one / cndnum
293 *
294  srnamt = 'SLATMS'
295  CALL slatms( n, n, dist, iseed, TYPE, RWORK, MODE,
296  \$ CNDNUM, ANORM, KL, KU, PACKIT, A, LDA, WORK,
297  \$ INFO )
298 *
299 * Check error code from SLATMS.
300 *
301  IF( info.NE.0 ) THEN
302  CALL alaerh( path, 'SLATMS', info, 0, uplo, n, n, -1,
303  \$ -1, -1, imat, nfail, nerrs, nout )
304  GO TO 120
305  END IF
306 *
307 * For types 3-5, zero one row and column of the matrix to
308 * test that INFO is returned correctly.
309 *
310  IF( zerot ) THEN
311  IF( imat.EQ.3 ) THEN
312  izero = 1
313  ELSE IF( imat.EQ.4 ) THEN
314  izero = n
315  ELSE
316  izero = n / 2 + 1
317  END IF
318 *
319 * Set row and column IZERO of A to 0.
320 *
321  IF( iuplo.EQ.1 ) THEN
322  ioff = ( izero-1 )*izero / 2
323  DO 20 i = 1, izero - 1
324  a( ioff+i ) = zero
325  20 CONTINUE
326  ioff = ioff + izero
327  DO 30 i = izero, n
328  a( ioff ) = zero
329  ioff = ioff + i
330  30 CONTINUE
331  ELSE
332  ioff = izero
333  DO 40 i = 1, izero - 1
334  a( ioff ) = zero
335  ioff = ioff + n - i
336  40 CONTINUE
337  ioff = ioff - izero
338  DO 50 i = izero, n
339  a( ioff+i ) = zero
340  50 CONTINUE
341  END IF
342  ELSE
343  izero = 0
344  END IF
345 *
346 * Save a copy of the matrix A in ASAV.
347 *
348  CALL scopy( npp, a, 1, asav, 1 )
349 *
350  DO 110 iequed = 1, 2
351  equed = equeds( iequed )
352  IF( iequed.EQ.1 ) THEN
353  nfact = 3
354  ELSE
355  nfact = 1
356  END IF
357 *
358  DO 100 ifact = 1, nfact
359  fact = facts( ifact )
360  prefac = lsame( fact, 'F' )
361  nofact = lsame( fact, 'N' )
362  equil = lsame( fact, 'E' )
363 *
364  IF( zerot ) THEN
365  IF( prefac )
366  \$ GO TO 100
367  rcondc = zero
368 *
369  ELSE IF( .NOT.lsame( fact, 'N' ) ) THEN
370 *
371 * Compute the condition number for comparison with
372 * the value returned by SPPSVX (FACT = 'N' reuses
373 * the condition number from the previous iteration
374 * with FACT = 'F').
375 *
376  CALL scopy( npp, asav, 1, afac, 1 )
377  IF( equil .OR. iequed.GT.1 ) THEN
378 *
379 * Compute row and column scale factors to
380 * equilibrate the matrix A.
381 *
382  CALL sppequ( uplo, n, afac, s, scond, amax,
383  \$ info )
384  IF( info.EQ.0 .AND. n.GT.0 ) THEN
385  IF( iequed.GT.1 )
386  \$ scond = zero
387 *
388 * Equilibrate the matrix.
389 *
390  CALL slaqsp( uplo, n, afac, s, scond,
391  \$ amax, equed )
392  END IF
393  END IF
394 *
395 * Save the condition number of the
396 * non-equilibrated system for use in SGET04.
397 *
398  IF( equil )
399  \$ roldc = rcondc
400 *
401 * Compute the 1-norm of A.
402 *
403  anorm = slansp( '1', uplo, n, afac, rwork )
404 *
405 * Factor the matrix A.
406 *
407  CALL spptrf( uplo, n, afac, info )
408 *
409 * Form the inverse of A.
410 *
411  CALL scopy( npp, afac, 1, a, 1 )
412  CALL spptri( uplo, n, a, info )
413 *
414 * Compute the 1-norm condition number of A.
415 *
416  ainvnm = slansp( '1', uplo, n, a, rwork )
417  IF( anorm.LE.zero .OR. ainvnm.LE.zero ) THEN
418  rcondc = one
419  ELSE
420  rcondc = ( one / anorm ) / ainvnm
421  END IF
422  END IF
423 *
424 * Restore the matrix A.
425 *
426  CALL scopy( npp, asav, 1, a, 1 )
427 *
428 * Form an exact solution and set the right hand side.
429 *
430  srnamt = 'SLARHS'
431  CALL slarhs( path, xtype, uplo, ' ', n, n, kl, ku,
432  \$ nrhs, a, lda, xact, lda, b, lda,
433  \$ iseed, info )
434  xtype = 'C'
435  CALL slacpy( 'Full', n, nrhs, b, lda, bsav, lda )
436 *
437  IF( nofact ) THEN
438 *
439 * --- Test SPPSV ---
440 *
441 * Compute the L*L' or U'*U factorization of the
442 * matrix and solve the system.
443 *
444  CALL scopy( npp, a, 1, afac, 1 )
445  CALL slacpy( 'Full', n, nrhs, b, lda, x, lda )
446 *
447  srnamt = 'SPPSV '
448  CALL sppsv( uplo, n, nrhs, afac, x, lda, info )
449 *
450 * Check error code from SPPSV .
451 *
452  IF( info.NE.izero ) THEN
453  CALL alaerh( path, 'SPPSV ', info, izero,
454  \$ uplo, n, n, -1, -1, nrhs, imat,
455  \$ nfail, nerrs, nout )
456  GO TO 70
457  ELSE IF( info.NE.0 ) THEN
458  GO TO 70
459  END IF
460 *
461 * Reconstruct matrix from factors and compute
462 * residual.
463 *
464  CALL sppt01( uplo, n, a, afac, rwork,
465  \$ result( 1 ) )
466 *
467 * Compute residual of the computed solution.
468 *
469  CALL slacpy( 'Full', n, nrhs, b, lda, work,
470  \$ lda )
471  CALL sppt02( uplo, n, nrhs, a, x, lda, work,
472  \$ lda, rwork, result( 2 ) )
473 *
474 * Check solution from generated exact solution.
475 *
476  CALL sget04( n, nrhs, x, lda, xact, lda, rcondc,
477  \$ result( 3 ) )
478  nt = 3
479 *
480 * Print information about the tests that did not
481 * pass the threshold.
482 *
483  DO 60 k = 1, nt
484  IF( result( k ).GE.thresh ) THEN
485  IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
486  \$ CALL aladhd( nout, path )
487  WRITE( nout, fmt = 9999 )'SPPSV ', uplo,
488  \$ n, imat, k, result( k )
489  nfail = nfail + 1
490  END IF
491  60 CONTINUE
492  nrun = nrun + nt
493  70 CONTINUE
494  END IF
495 *
496 * --- Test SPPSVX ---
497 *
498  IF( .NOT.prefac .AND. npp.GT.0 )
499  \$ CALL slaset( 'Full', npp, 1, zero, zero, afac,
500  \$ npp )
501  CALL slaset( 'Full', n, nrhs, zero, zero, x, lda )
502  IF( iequed.GT.1 .AND. n.GT.0 ) THEN
503 *
504 * Equilibrate the matrix if FACT='F' and
505 * EQUED='Y'.
506 *
507  CALL slaqsp( uplo, n, a, s, scond, amax, equed )
508  END IF
509 *
510 * Solve the system and compute the condition number
511 * and error bounds using SPPSVX.
512 *
513  srnamt = 'SPPSVX'
514  CALL sppsvx( fact, uplo, n, nrhs, a, afac, equed,
515  \$ s, b, lda, x, lda, rcond, rwork,
516  \$ rwork( nrhs+1 ), work, iwork, info )
517 *
518 * Check the error code from SPPSVX.
519 *
520  IF( info.NE.izero ) THEN
521  CALL alaerh( path, 'SPPSVX', info, izero,
522  \$ fact // uplo, n, n, -1, -1, nrhs,
523  \$ imat, nfail, nerrs, nout )
524  GO TO 90
525  END IF
526 *
527  IF( info.EQ.0 ) THEN
528  IF( .NOT.prefac ) THEN
529 *
530 * Reconstruct matrix from factors and compute
531 * residual.
532 *
533  CALL sppt01( uplo, n, a, afac,
534  \$ rwork( 2*nrhs+1 ), result( 1 ) )
535  k1 = 1
536  ELSE
537  k1 = 2
538  END IF
539 *
540 * Compute residual of the computed solution.
541 *
542  CALL slacpy( 'Full', n, nrhs, bsav, lda, work,
543  \$ lda )
544  CALL sppt02( uplo, n, nrhs, asav, x, lda, work,
545  \$ lda, rwork( 2*nrhs+1 ),
546  \$ result( 2 ) )
547 *
548 * Check solution from generated exact solution.
549 *
550  IF( nofact .OR. ( prefac .AND. lsame( equed,
551  \$ 'N' ) ) ) THEN
552  CALL sget04( n, nrhs, x, lda, xact, lda,
553  \$ rcondc, result( 3 ) )
554  ELSE
555  CALL sget04( n, nrhs, x, lda, xact, lda,
556  \$ roldc, result( 3 ) )
557  END IF
558 *
559 * Check the error bounds from iterative
560 * refinement.
561 *
562  CALL sppt05( uplo, n, nrhs, asav, b, lda, x,
563  \$ lda, xact, lda, rwork,
564  \$ rwork( nrhs+1 ), result( 4 ) )
565  ELSE
566  k1 = 6
567  END IF
568 *
569 * Compare RCOND from SPPSVX with the computed value
570 * in RCONDC.
571 *
572  result( 6 ) = sget06( rcond, rcondc )
573 *
574 * Print information about the tests that did not pass
575 * the threshold.
576 *
577  DO 80 k = k1, 6
578  IF( result( k ).GE.thresh ) THEN
579  IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
580  \$ CALL aladhd( nout, path )
581  IF( prefac ) THEN
582  WRITE( nout, fmt = 9997 )'SPPSVX', fact,
583  \$ uplo, n, equed, imat, k, result( k )
584  ELSE
585  WRITE( nout, fmt = 9998 )'SPPSVX', fact,
586  \$ uplo, n, imat, k, result( k )
587  END IF
588  nfail = nfail + 1
589  END IF
590  80 CONTINUE
591  nrun = nrun + 7 - k1
592  90 CONTINUE
593  100 CONTINUE
594  110 CONTINUE
595  120 CONTINUE
596  130 CONTINUE
597  140 CONTINUE
598 *
599 * Print a summary of the results.
600 *
601  CALL alasvm( path, nout, nfail, nrun, nerrs )
602 *
603  9999 FORMAT( 1x, a, ', UPLO=''', a1, ''', N =', i5, ', type ', i1,
604  \$ ', test(', i1, ')=', g12.5 )
605  9998 FORMAT( 1x, a, ', FACT=''', a1, ''', UPLO=''', a1, ''', N=', i5,
606  \$ ', type ', i1, ', test(', i1, ')=', g12.5 )
607  9997 FORMAT( 1x, a, ', FACT=''', a1, ''', UPLO=''', a1, ''', N=', i5,
608  \$ ', EQUED=''', a1, ''', type ', i1, ', test(', i1, ')=',
609  \$ g12.5 )
610  RETURN
611 *
612 * End of SDRVPP
613 *
subroutine slaset(UPLO, M, N, ALPHA, BETA, A, LDA)
SLASET initializes the off-diagonal elements and the diagonal elements of a matrix to given values.
Definition: slaset.f:110
subroutine slacpy(UPLO, M, N, A, LDA, B, LDB)
SLACPY copies all or part of one two-dimensional array to another.
Definition: slacpy.f:103
logical function lsame(CA, CB)
LSAME
Definition: lsame.f:53
subroutine alasvm(TYPE, NOUT, NFAIL, NRUN, NERRS)
ALASVM
Definition: alasvm.f:73
subroutine alaerh(PATH, SUBNAM, INFO, INFOE, OPTS, M, N, KL, KU, N5, IMAT, NFAIL, NERRS, NOUT)
ALAERH
Definition: alaerh.f:147
subroutine slatms(M, N, DIST, ISEED, SYM, D, MODE, COND, DMAX, KL, KU, PACK, A, LDA, WORK, INFO)
SLATMS
Definition: slatms.f:321
real function slansp(NORM, UPLO, N, AP, WORK)
SLANSP returns the value of the 1-norm, or the Frobenius norm, or the infinity norm,...
Definition: slansp.f:114
subroutine slaqsp(UPLO, N, AP, S, SCOND, AMAX, EQUED)
SLAQSP scales a symmetric/Hermitian matrix in packed storage, using scaling factors computed by sppeq...
Definition: slaqsp.f:125
subroutine spptrf(UPLO, N, AP, INFO)
SPPTRF
Definition: spptrf.f:119
subroutine sppequ(UPLO, N, AP, S, SCOND, AMAX, INFO)
SPPEQU
Definition: sppequ.f:116
subroutine spptri(UPLO, N, AP, INFO)
SPPTRI
Definition: spptri.f:93
subroutine sppsvx(FACT, UPLO, N, NRHS, AP, AFP, EQUED, S, B, LDB, X, LDX, RCOND, FERR, BERR, WORK, IWORK, INFO)
SPPSVX computes the solution to system of linear equations A * X = B for OTHER matrices
Definition: sppsvx.f:311
subroutine sppsv(UPLO, N, NRHS, AP, B, LDB, INFO)
SPPSV computes the solution to system of linear equations A * X = B for OTHER matrices
Definition: sppsv.f:144
subroutine scopy(N, SX, INCX, SY, INCY)
SCOPY
Definition: scopy.f:82
subroutine slarhs(PATH, XTYPE, UPLO, TRANS, M, N, KL, KU, NRHS, A, LDA, X, LDX, B, LDB, ISEED, INFO)
SLARHS
Definition: slarhs.f:205
subroutine slatb4(PATH, IMAT, M, N, TYPE, KL, KU, ANORM, MODE, CNDNUM, DIST)
SLATB4
Definition: slatb4.f:120
subroutine sppt05(UPLO, N, NRHS, AP, B, LDB, X, LDX, XACT, LDXACT, FERR, BERR, RESLTS)
SPPT05
Definition: sppt05.f:156
subroutine serrvx(PATH, NUNIT)
SERRVX
Definition: serrvx.f:55
subroutine sppt02(UPLO, N, NRHS, A, X, LDX, B, LDB, RWORK, RESID)
SPPT02
Definition: sppt02.f:122
subroutine sget04(N, NRHS, X, LDX, XACT, LDXACT, RCOND, RESID)
SGET04
Definition: sget04.f:102
subroutine sppt01(UPLO, N, A, AFAC, RWORK, RESID)
SPPT01
Definition: sppt01.f:93
real function sget06(RCOND, RCONDC)
SGET06
Definition: sget06.f:55
Here is the call graph for this function:
Here is the caller graph for this function: