 LAPACK  3.10.1 LAPACK: Linear Algebra PACKage

## ◆ sgtt05()

 subroutine sgtt05 ( character TRANS, integer N, integer NRHS, real, dimension( * ) DL, real, dimension( * ) D, real, dimension( * ) DU, real, dimension( ldb, * ) B, integer LDB, real, dimension( ldx, * ) X, integer LDX, real, dimension( ldxact, * ) XACT, integer LDXACT, real, dimension( * ) FERR, real, dimension( * ) BERR, real, dimension( * ) RESLTS )

SGTT05

Purpose:
``` SGTT05 tests the error bounds from iterative refinement for the
computed solution to a system of equations A*X = B, where A is a
general tridiagonal matrix of order n and op(A) = A or A**T,
depending on TRANS.

RESLTS(1) = test of the error bound
= norm(X - XACT) / ( norm(X) * FERR )

A large value is returned if this ratio is not less than one.

RESLTS(2) = residual from the iterative refinement routine
= the maximum of BERR / ( NZ*EPS + (*) ), where
(*) = NZ*UNFL / (min_i (abs(op(A))*abs(X) +abs(b))_i )
and NZ = max. number of nonzeros in any row of A, plus 1```
Parameters
 [in] TRANS ``` TRANS is CHARACTER*1 Specifies the form of the system of equations. = 'N': A * X = B (No transpose) = 'T': A**T * X = B (Transpose) = 'C': A**H * X = B (Conjugate transpose = Transpose)``` [in] N ``` N is INTEGER The number of rows of the matrices X and XACT. N >= 0.``` [in] NRHS ``` NRHS is INTEGER The number of columns of the matrices X and XACT. NRHS >= 0.``` [in] DL ``` DL is REAL array, dimension (N-1) The (n-1) sub-diagonal elements of A.``` [in] D ``` D is REAL array, dimension (N) The diagonal elements of A.``` [in] DU ``` DU is REAL array, dimension (N-1) The (n-1) super-diagonal elements of A.``` [in] B ``` B is REAL array, dimension (LDB,NRHS) The right hand side vectors for the system of linear equations.``` [in] LDB ``` LDB is INTEGER The leading dimension of the array B. LDB >= max(1,N).``` [in] X ``` X is REAL array, dimension (LDX,NRHS) The computed solution vectors. Each vector is stored as a column of the matrix X.``` [in] LDX ``` LDX is INTEGER The leading dimension of the array X. LDX >= max(1,N).``` [in] XACT ``` XACT is REAL array, dimension (LDX,NRHS) The exact solution vectors. Each vector is stored as a column of the matrix XACT.``` [in] LDXACT ``` LDXACT is INTEGER The leading dimension of the array XACT. LDXACT >= max(1,N).``` [in] FERR ``` FERR is REAL array, dimension (NRHS) The estimated forward error bounds for each solution vector X. If XTRUE is the true solution, FERR bounds the magnitude of the largest entry in (X - XTRUE) divided by the magnitude of the largest entry in X.``` [in] BERR ``` BERR is REAL array, dimension (NRHS) The componentwise relative backward error of each solution vector (i.e., the smallest relative change in any entry of A or B that makes X an exact solution).``` [out] RESLTS ``` RESLTS is REAL array, dimension (2) The maximum over the NRHS solution vectors of the ratios: RESLTS(1) = norm(X - XACT) / ( norm(X) * FERR ) RESLTS(2) = BERR / ( NZ*EPS + (*) )```

Definition at line 163 of file sgtt05.f.

165 *
166 * -- LAPACK test routine --
167 * -- LAPACK is a software package provided by Univ. of Tennessee, --
168 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
169 *
170 * .. Scalar Arguments ..
171  CHARACTER TRANS
172  INTEGER LDB, LDX, LDXACT, N, NRHS
173 * ..
174 * .. Array Arguments ..
175  REAL B( LDB, * ), BERR( * ), D( * ), DL( * ),
176  \$ DU( * ), FERR( * ), RESLTS( * ), X( LDX, * ),
177  \$ XACT( LDXACT, * )
178 * ..
179 *
180 * =====================================================================
181 *
182 * .. Parameters ..
183  REAL ZERO, ONE
184  parameter( zero = 0.0e+0, one = 1.0e+0 )
185 * ..
186 * .. Local Scalars ..
187  LOGICAL NOTRAN
188  INTEGER I, IMAX, J, K, NZ
189  REAL AXBI, DIFF, EPS, ERRBND, OVFL, TMP, UNFL, XNORM
190 * ..
191 * .. External Functions ..
192  LOGICAL LSAME
193  INTEGER ISAMAX
194  REAL SLAMCH
195  EXTERNAL lsame, isamax, slamch
196 * ..
197 * .. Intrinsic Functions ..
198  INTRINSIC abs, max, min
199 * ..
200 * .. Executable Statements ..
201 *
202 * Quick exit if N = 0 or NRHS = 0.
203 *
204  IF( n.LE.0 .OR. nrhs.LE.0 ) THEN
205  reslts( 1 ) = zero
206  reslts( 2 ) = zero
207  RETURN
208  END IF
209 *
210  eps = slamch( 'Epsilon' )
211  unfl = slamch( 'Safe minimum' )
212  ovfl = one / unfl
213  notran = lsame( trans, 'N' )
214  nz = 4
215 *
216 * Test 1: Compute the maximum of
217 * norm(X - XACT) / ( norm(X) * FERR )
218 * over all the vectors X and XACT using the infinity-norm.
219 *
220  errbnd = zero
221  DO 30 j = 1, nrhs
222  imax = isamax( n, x( 1, j ), 1 )
223  xnorm = max( abs( x( imax, j ) ), unfl )
224  diff = zero
225  DO 10 i = 1, n
226  diff = max( diff, abs( x( i, j )-xact( i, j ) ) )
227  10 CONTINUE
228 *
229  IF( xnorm.GT.one ) THEN
230  GO TO 20
231  ELSE IF( diff.LE.ovfl*xnorm ) THEN
232  GO TO 20
233  ELSE
234  errbnd = one / eps
235  GO TO 30
236  END IF
237 *
238  20 CONTINUE
239  IF( diff / xnorm.LE.ferr( j ) ) THEN
240  errbnd = max( errbnd, ( diff / xnorm ) / ferr( j ) )
241  ELSE
242  errbnd = one / eps
243  END IF
244  30 CONTINUE
245  reslts( 1 ) = errbnd
246 *
247 * Test 2: Compute the maximum of BERR / ( NZ*EPS + (*) ), where
248 * (*) = NZ*UNFL / (min_i (abs(op(A))*abs(X) +abs(b))_i )
249 *
250  DO 60 k = 1, nrhs
251  IF( notran ) THEN
252  IF( n.EQ.1 ) THEN
253  axbi = abs( b( 1, k ) ) + abs( d( 1 )*x( 1, k ) )
254  ELSE
255  axbi = abs( b( 1, k ) ) + abs( d( 1 )*x( 1, k ) ) +
256  \$ abs( du( 1 )*x( 2, k ) )
257  DO 40 i = 2, n - 1
258  tmp = abs( b( i, k ) ) + abs( dl( i-1 )*x( i-1, k ) )
259  \$ + abs( d( i )*x( i, k ) ) +
260  \$ abs( du( i )*x( i+1, k ) )
261  axbi = min( axbi, tmp )
262  40 CONTINUE
263  tmp = abs( b( n, k ) ) + abs( dl( n-1 )*x( n-1, k ) ) +
264  \$ abs( d( n )*x( n, k ) )
265  axbi = min( axbi, tmp )
266  END IF
267  ELSE
268  IF( n.EQ.1 ) THEN
269  axbi = abs( b( 1, k ) ) + abs( d( 1 )*x( 1, k ) )
270  ELSE
271  axbi = abs( b( 1, k ) ) + abs( d( 1 )*x( 1, k ) ) +
272  \$ abs( dl( 1 )*x( 2, k ) )
273  DO 50 i = 2, n - 1
274  tmp = abs( b( i, k ) ) + abs( du( i-1 )*x( i-1, k ) )
275  \$ + abs( d( i )*x( i, k ) ) +
276  \$ abs( dl( i )*x( i+1, k ) )
277  axbi = min( axbi, tmp )
278  50 CONTINUE
279  tmp = abs( b( n, k ) ) + abs( du( n-1 )*x( n-1, k ) ) +
280  \$ abs( d( n )*x( n, k ) )
281  axbi = min( axbi, tmp )
282  END IF
283  END IF
284  tmp = berr( k ) / ( nz*eps+nz*unfl / max( axbi, nz*unfl ) )
285  IF( k.EQ.1 ) THEN
286  reslts( 2 ) = tmp
287  ELSE
288  reslts( 2 ) = max( reslts( 2 ), tmp )
289  END IF
290  60 CONTINUE
291 *
292  RETURN
293 *
294 * End of SGTT05
295 *
integer function isamax(N, SX, INCX)
ISAMAX
Definition: isamax.f:71
logical function lsame(CA, CB)
LSAME
Definition: lsame.f:53
real function slamch(CMACH)
SLAMCH
Definition: slamch.f:68
Here is the caller graph for this function: