 LAPACK  3.10.0 LAPACK: Linear Algebra PACKage

## ◆ spbt01()

 subroutine spbt01 ( character UPLO, integer N, integer KD, real, dimension( lda, * ) A, integer LDA, real, dimension( ldafac, * ) AFAC, integer LDAFAC, real, dimension( * ) RWORK, real RESID )

SPBT01

Purpose:
``` SPBT01 reconstructs a symmetric positive definite band matrix A from
its L*L' or U'*U factorization and computes the residual
norm( L*L' - A ) / ( N * norm(A) * EPS ) or
norm( U'*U - A ) / ( N * norm(A) * EPS ),
where EPS is the machine epsilon, L' is the conjugate transpose of
L, and U' is the conjugate transpose of U.```
Parameters
 [in] UPLO ``` UPLO is CHARACTER*1 Specifies whether the upper or lower triangular part of the symmetric matrix A is stored: = 'U': Upper triangular = 'L': Lower triangular``` [in] N ``` N is INTEGER The number of rows and columns of the matrix A. N >= 0.``` [in] KD ``` KD is INTEGER The number of super-diagonals of the matrix A if UPLO = 'U', or the number of sub-diagonals if UPLO = 'L'. KD >= 0.``` [in] A ``` A is REAL array, dimension (LDA,N) The original symmetric band matrix A. If UPLO = 'U', the upper triangular part of A is stored as a band matrix; if UPLO = 'L', the lower triangular part of A is stored. The columns of the appropriate triangle are stored in the columns of A and the diagonals of the triangle are stored in the rows of A. See SPBTRF for further details.``` [in] LDA ``` LDA is INTEGER. The leading dimension of the array A. LDA >= max(1,KD+1).``` [in] AFAC ``` AFAC is REAL array, dimension (LDAFAC,N) The factored form of the matrix A. AFAC contains the factor L or U from the L*L' or U'*U factorization in band storage format, as computed by SPBTRF.``` [in] LDAFAC ``` LDAFAC is INTEGER The leading dimension of the array AFAC. LDAFAC >= max(1,KD+1).``` [out] RWORK ` RWORK is REAL array, dimension (N)` [out] RESID ``` RESID is REAL If UPLO = 'L', norm(L*L' - A) / ( N * norm(A) * EPS ) If UPLO = 'U', norm(U'*U - A) / ( N * norm(A) * EPS )```

Definition at line 117 of file spbt01.f.

119 *
120 * -- LAPACK test routine --
121 * -- LAPACK is a software package provided by Univ. of Tennessee, --
122 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
123 *
124 * .. Scalar Arguments ..
125  CHARACTER UPLO
126  INTEGER KD, LDA, LDAFAC, N
127  REAL RESID
128 * ..
129 * .. Array Arguments ..
130  REAL A( LDA, * ), AFAC( LDAFAC, * ), RWORK( * )
131 * ..
132 *
133 * =====================================================================
134 *
135 *
136 * .. Parameters ..
137  REAL ZERO, ONE
138  parameter( zero = 0.0e+0, one = 1.0e+0 )
139 * ..
140 * .. Local Scalars ..
141  INTEGER I, J, K, KC, KLEN, ML, MU
142  REAL ANORM, EPS, T
143 * ..
144 * .. External Functions ..
145  LOGICAL LSAME
146  REAL SDOT, SLAMCH, SLANSB
147  EXTERNAL lsame, sdot, slamch, slansb
148 * ..
149 * .. External Subroutines ..
150  EXTERNAL sscal, ssyr, strmv
151 * ..
152 * .. Intrinsic Functions ..
153  INTRINSIC max, min, real
154 * ..
155 * .. Executable Statements ..
156 *
157 * Quick exit if N = 0.
158 *
159  IF( n.LE.0 ) THEN
160  resid = zero
161  RETURN
162  END IF
163 *
164 * Exit with RESID = 1/EPS if ANORM = 0.
165 *
166  eps = slamch( 'Epsilon' )
167  anorm = slansb( '1', uplo, n, kd, a, lda, rwork )
168  IF( anorm.LE.zero ) THEN
169  resid = one / eps
170  RETURN
171  END IF
172 *
173 * Compute the product U'*U, overwriting U.
174 *
175  IF( lsame( uplo, 'U' ) ) THEN
176  DO 10 k = n, 1, -1
177  kc = max( 1, kd+2-k )
178  klen = kd + 1 - kc
179 *
180 * Compute the (K,K) element of the result.
181 *
182  t = sdot( klen+1, afac( kc, k ), 1, afac( kc, k ), 1 )
183  afac( kd+1, k ) = t
184 *
185 * Compute the rest of column K.
186 *
187  IF( klen.GT.0 )
188  \$ CALL strmv( 'Upper', 'Transpose', 'Non-unit', klen,
189  \$ afac( kd+1, k-klen ), ldafac-1,
190  \$ afac( kc, k ), 1 )
191 *
192  10 CONTINUE
193 *
194 * UPLO = 'L': Compute the product L*L', overwriting L.
195 *
196  ELSE
197  DO 20 k = n, 1, -1
198  klen = min( kd, n-k )
199 *
200 * Add a multiple of column K of the factor L to each of
201 * columns K+1 through N.
202 *
203  IF( klen.GT.0 )
204  \$ CALL ssyr( 'Lower', klen, one, afac( 2, k ), 1,
205  \$ afac( 1, k+1 ), ldafac-1 )
206 *
207 * Scale column K by the diagonal element.
208 *
209  t = afac( 1, k )
210  CALL sscal( klen+1, t, afac( 1, k ), 1 )
211 *
212  20 CONTINUE
213  END IF
214 *
215 * Compute the difference L*L' - A or U'*U - A.
216 *
217  IF( lsame( uplo, 'U' ) ) THEN
218  DO 40 j = 1, n
219  mu = max( 1, kd+2-j )
220  DO 30 i = mu, kd + 1
221  afac( i, j ) = afac( i, j ) - a( i, j )
222  30 CONTINUE
223  40 CONTINUE
224  ELSE
225  DO 60 j = 1, n
226  ml = min( kd+1, n-j+1 )
227  DO 50 i = 1, ml
228  afac( i, j ) = afac( i, j ) - a( i, j )
229  50 CONTINUE
230  60 CONTINUE
231  END IF
232 *
233 * Compute norm( L*L' - A ) / ( N * norm(A) * EPS )
234 *
235  resid = slansb( 'I', uplo, n, kd, afac, ldafac, rwork )
236 *
237  resid = ( ( resid / real( n ) ) / anorm ) / eps
238 *
239  RETURN
240 *
241 * End of SPBT01
242 *
logical function lsame(CA, CB)
LSAME
Definition: lsame.f:53
real function slansb(NORM, UPLO, N, K, AB, LDAB, WORK)
SLANSB returns the value of the 1-norm, or the Frobenius norm, or the infinity norm,...
Definition: slansb.f:129
subroutine sscal(N, SA, SX, INCX)
SSCAL
Definition: sscal.f:79
real function sdot(N, SX, INCX, SY, INCY)
SDOT
Definition: sdot.f:82
subroutine strmv(UPLO, TRANS, DIAG, N, A, LDA, X, INCX)
STRMV
Definition: strmv.f:147
subroutine ssyr(UPLO, N, ALPHA, X, INCX, A, LDA)
SSYR
Definition: ssyr.f:132
real function slamch(CMACH)
SLAMCH
Definition: slamch.f:68
Here is the call graph for this function:
Here is the caller graph for this function: