LAPACK 3.12.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
sgeqp3rk.f
Go to the documentation of this file.
1*> \brief \b SGEQP3RK computes a truncated Householder QR factorization with column pivoting of a real m-by-n matrix A by using Level 3 BLAS and overwrites a real m-by-nrhs matrix B with Q**T * B.
2*
3* =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6* http://www.netlib.org/lapack/explore-html/
7*
8*> \htmlonly
9*> Download SGEQP3RK + dependencies
10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sgeqp3rk.f">
11*> [TGZ]</a>
12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sgeqp3rk.f">
13*> [ZIP]</a>
14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sgeqp3rk.f">
15*> [TXT]</a>
16*> \endhtmlonly
17*
18* Definition:
19* ===========
20*
21* SUBROUTINE SGEQP3RK( M, N, NRHS, KMAX, ABSTOL, RELTOL, A, LDA,
22* $ K, MAXC2NRMK, RELMAXC2NRMK, JPIV, TAU,
23* $ WORK, LWORK, IWORK, INFO )
24* IMPLICIT NONE
25*
26* .. Scalar Arguments ..
27* INTEGER INFO, K, KMAX, LDA, LWORK, M, N, NRHS
28* REAL ABSTOL, MAXC2NRMK, RELMAXC2NRMK, RELTOL
29* ..
30* .. Array Arguments ..
31* INTEGER IWORK( * ), JPIV( * )
32* REAL A( LDA, * ), TAU( * ), WORK( * )
33* ..
34*
35*
36*> \par Purpose:
37* =============
38*>
39*> \verbatim
40*>
41*> SGEQP3RK performs two tasks simultaneously:
42*>
43*> Task 1: The routine computes a truncated (rank K) or full rank
44*> Householder QR factorization with column pivoting of a real
45*> M-by-N matrix A using Level 3 BLAS. K is the number of columns
46*> that were factorized, i.e. factorization rank of the
47*> factor R, K <= min(M,N).
48*>
49*> A * P(K) = Q(K) * R(K) =
50*>
51*> = Q(K) * ( R11(K) R12(K) ) = Q(K) * ( R(K)_approx )
52*> ( 0 R22(K) ) ( 0 R(K)_residual ),
53*>
54*> where:
55*>
56*> P(K) is an N-by-N permutation matrix;
57*> Q(K) is an M-by-M orthogonal matrix;
58*> R(K)_approx = ( R11(K), R12(K) ) is a rank K approximation of the
59*> full rank factor R with K-by-K upper-triangular
60*> R11(K) and K-by-N rectangular R12(K). The diagonal
61*> entries of R11(K) appear in non-increasing order
62*> of absolute value, and absolute values of all of
63*> them exceed the maximum column 2-norm of R22(K)
64*> up to roundoff error.
65*> R(K)_residual = R22(K) is the residual of a rank K approximation
66*> of the full rank factor R. It is a
67*> an (M-K)-by-(N-K) rectangular matrix;
68*> 0 is a an (M-K)-by-K zero matrix.
69*>
70*> Task 2: At the same time, the routine overwrites a real M-by-NRHS
71*> matrix B with Q(K)**T * B using Level 3 BLAS.
72*>
73*> =====================================================================
74*>
75*> The matrices A and B are stored on input in the array A as
76*> the left and right blocks A(1:M,1:N) and A(1:M, N+1:N+NRHS)
77*> respectively.
78*>
79*> N NRHS
80*> array_A = M [ mat_A, mat_B ]
81*>
82*> The truncation criteria (i.e. when to stop the factorization)
83*> can be any of the following:
84*>
85*> 1) The input parameter KMAX, the maximum number of columns
86*> KMAX to factorize, i.e. the factorization rank is limited
87*> to KMAX. If KMAX >= min(M,N), the criterion is not used.
88*>
89*> 2) The input parameter ABSTOL, the absolute tolerance for
90*> the maximum column 2-norm of the residual matrix R22(K). This
91*> means that the factorization stops if this norm is less or
92*> equal to ABSTOL. If ABSTOL < 0.0, the criterion is not used.
93*>
94*> 3) The input parameter RELTOL, the tolerance for the maximum
95*> column 2-norm matrix of the residual matrix R22(K) divided
96*> by the maximum column 2-norm of the original matrix A, which
97*> is equal to abs(R(1,1)). This means that the factorization stops
98*> when the ratio of the maximum column 2-norm of R22(K) to
99*> the maximum column 2-norm of A is less than or equal to RELTOL.
100*> If RELTOL < 0.0, the criterion is not used.
101*>
102*> 4) In case both stopping criteria ABSTOL or RELTOL are not used,
103*> and when the residual matrix R22(K) is a zero matrix in some
104*> factorization step K. ( This stopping criterion is implicit. )
105*>
106*> The algorithm stops when any of these conditions is first
107*> satisfied, otherwise the whole matrix A is factorized.
108*>
109*> To factorize the whole matrix A, use the values
110*> KMAX >= min(M,N), ABSTOL < 0.0 and RELTOL < 0.0.
111*>
112*> The routine returns:
113*> a) Q(K), R(K)_approx = ( R11(K), R12(K) ),
114*> R(K)_residual = R22(K), P(K), i.e. the resulting matrices
115*> of the factorization; P(K) is represented by JPIV,
116*> ( if K = min(M,N), R(K)_approx is the full factor R,
117*> and there is no residual matrix R(K)_residual);
118*> b) K, the number of columns that were factorized,
119*> i.e. factorization rank;
120*> c) MAXC2NRMK, the maximum column 2-norm of the residual
121*> matrix R(K)_residual = R22(K),
122*> ( if K = min(M,N), MAXC2NRMK = 0.0 );
123*> d) RELMAXC2NRMK equals MAXC2NRMK divided by MAXC2NRM, the maximum
124*> column 2-norm of the original matrix A, which is equal
125*> to abs(R(1,1)), ( if K = min(M,N), RELMAXC2NRMK = 0.0 );
126*> e) Q(K)**T * B, the matrix B with the orthogonal
127*> transformation Q(K)**T applied on the left.
128*>
129*> The N-by-N permutation matrix P(K) is stored in a compact form in
130*> the integer array JPIV. For 1 <= j <= N, column j
131*> of the matrix A was interchanged with column JPIV(j).
132*>
133*> The M-by-M orthogonal matrix Q is represented as a product
134*> of elementary Householder reflectors
135*>
136*> Q(K) = H(1) * H(2) * . . . * H(K),
137*>
138*> where K is the number of columns that were factorized.
139*>
140*> Each H(j) has the form
141*>
142*> H(j) = I - tau * v * v**T,
143*>
144*> where 1 <= j <= K and
145*> I is an M-by-M identity matrix,
146*> tau is a real scalar,
147*> v is a real vector with v(1:j-1) = 0 and v(j) = 1.
148*>
149*> v(j+1:M) is stored on exit in A(j+1:M,j) and tau in TAU(j).
150*>
151*> See the Further Details section for more information.
152*> \endverbatim
153*
154* Arguments:
155* ==========
156*
157*> \param[in] M
158*> \verbatim
159*> M is INTEGER
160*> The number of rows of the matrix A. M >= 0.
161*> \endverbatim
162*>
163*> \param[in] N
164*> \verbatim
165*> N is INTEGER
166*> The number of columns of the matrix A. N >= 0.
167*> \endverbatim
168*>
169*> \param[in] NRHS
170*> \verbatim
171*> NRHS is INTEGER
172*> The number of right hand sides, i.e. the number of
173*> columns of the matrix B. NRHS >= 0.
174*> \endverbatim
175*>
176*> \param[in] KMAX
177*> \verbatim
178*> KMAX is INTEGER
179*>
180*> The first factorization stopping criterion. KMAX >= 0.
181*>
182*> The maximum number of columns of the matrix A to factorize,
183*> i.e. the maximum factorization rank.
184*>
185*> a) If KMAX >= min(M,N), then this stopping criterion
186*> is not used, the routine factorizes columns
187*> depending on ABSTOL and RELTOL.
188*>
189*> b) If KMAX = 0, then this stopping criterion is
190*> satisfied on input and the routine exits immediately.
191*> This means that the factorization is not performed,
192*> the matrices A and B are not modified, and
193*> the matrix A is itself the residual.
194*> \endverbatim
195*>
196*> \param[in] ABSTOL
197*> \verbatim
198*> ABSTOL is REAL
199*>
200*> The second factorization stopping criterion, cannot be NaN.
201*>
202*> The absolute tolerance (stopping threshold) for
203*> maximum column 2-norm of the residual matrix R22(K).
204*> The algorithm converges (stops the factorization) when
205*> the maximum column 2-norm of the residual matrix R22(K)
206*> is less than or equal to ABSTOL. Let SAFMIN = SLAMCH('S').
207*>
208*> a) If ABSTOL is NaN, then no computation is performed
209*> and an error message ( INFO = -5 ) is issued
210*> by XERBLA.
211*>
212*> b) If ABSTOL < 0.0, then this stopping criterion is not
213*> used, the routine factorizes columns depending
214*> on KMAX and RELTOL.
215*> This includes the case ABSTOL = -Inf.
216*>
217*> c) If 0.0 <= ABSTOL < 2*SAFMIN, then ABSTOL = 2*SAFMIN
218*> is used. This includes the case ABSTOL = -0.0.
219*>
220*> d) If 2*SAFMIN <= ABSTOL then the input value
221*> of ABSTOL is used.
222*>
223*> Let MAXC2NRM be the maximum column 2-norm of the
224*> whole original matrix A.
225*> If ABSTOL chosen above is >= MAXC2NRM, then this
226*> stopping criterion is satisfied on input and routine exits
227*> immediately after MAXC2NRM is computed. The routine
228*> returns MAXC2NRM in MAXC2NORMK,
229*> and 1.0 in RELMAXC2NORMK.
230*> This includes the case ABSTOL = +Inf. This means that the
231*> factorization is not performed, the matrices A and B are not
232*> modified, and the matrix A is itself the residual.
233*> \endverbatim
234*>
235*> \param[in] RELTOL
236*> \verbatim
237*> RELTOL is REAL
238*>
239*> The third factorization stopping criterion, cannot be NaN.
240*>
241*> The tolerance (stopping threshold) for the ratio
242*> abs(R(K+1,K+1))/abs(R(1,1)) of the maximum column 2-norm of
243*> the residual matrix R22(K) to the maximum column 2-norm of
244*> the original matrix A. The algorithm converges (stops the
245*> factorization), when abs(R(K+1,K+1))/abs(R(1,1)) A is less
246*> than or equal to RELTOL. Let EPS = SLAMCH('E').
247*>
248*> a) If RELTOL is NaN, then no computation is performed
249*> and an error message ( INFO = -6 ) is issued
250*> by XERBLA.
251*>
252*> b) If RELTOL < 0.0, then this stopping criterion is not
253*> used, the routine factorizes columns depending
254*> on KMAX and ABSTOL.
255*> This includes the case RELTOL = -Inf.
256*>
257*> c) If 0.0 <= RELTOL < EPS, then RELTOL = EPS is used.
258*> This includes the case RELTOL = -0.0.
259*>
260*> d) If EPS <= RELTOL then the input value of RELTOL
261*> is used.
262*>
263*> Let MAXC2NRM be the maximum column 2-norm of the
264*> whole original matrix A.
265*> If RELTOL chosen above is >= 1.0, then this stopping
266*> criterion is satisfied on input and routine exits
267*> immediately after MAXC2NRM is computed.
268*> The routine returns MAXC2NRM in MAXC2NORMK,
269*> and 1.0 in RELMAXC2NORMK.
270*> This includes the case RELTOL = +Inf. This means that the
271*> factorization is not performed, the matrices A and B are not
272*> modified, and the matrix A is itself the residual.
273*>
274*> NOTE: We recommend that RELTOL satisfy
275*> min( max(M,N)*EPS, sqrt(EPS) ) <= RELTOL
276*> \endverbatim
277*>
278*> \param[in,out] A
279*> \verbatim
280*> A is REAL array, dimension (LDA,N+NRHS)
281*>
282*> On entry:
283*>
284*> a) The subarray A(1:M,1:N) contains the M-by-N matrix A.
285*> b) The subarray A(1:M,N+1:N+NRHS) contains the M-by-NRHS
286*> matrix B.
287*>
288*> N NRHS
289*> array_A = M [ mat_A, mat_B ]
290*>
291*> On exit:
292*>
293*> a) The subarray A(1:M,1:N) contains parts of the factors
294*> of the matrix A:
295*>
296*> 1) If K = 0, A(1:M,1:N) contains the original matrix A.
297*> 2) If K > 0, A(1:M,1:N) contains parts of the
298*> factors:
299*>
300*> 1. The elements below the diagonal of the subarray
301*> A(1:M,1:K) together with TAU(1:K) represent the
302*> orthogonal matrix Q(K) as a product of K Householder
303*> elementary reflectors.
304*>
305*> 2. The elements on and above the diagonal of
306*> the subarray A(1:K,1:N) contain K-by-N
307*> upper-trapezoidal matrix
308*> R(K)_approx = ( R11(K), R12(K) ).
309*> NOTE: If K=min(M,N), i.e. full rank factorization,
310*> then R_approx(K) is the full factor R which
311*> is upper-trapezoidal. If, in addition, M>=N,
312*> then R is upper-triangular.
313*>
314*> 3. The subarray A(K+1:M,K+1:N) contains (M-K)-by-(N-K)
315*> rectangular matrix R(K)_residual = R22(K).
316*>
317*> b) If NRHS > 0, the subarray A(1:M,N+1:N+NRHS) contains
318*> the M-by-NRHS product Q(K)**T * B.
319*> \endverbatim
320*>
321*> \param[in] LDA
322*> \verbatim
323*> LDA is INTEGER
324*> The leading dimension of the array A. LDA >= max(1,M).
325*> This is the leading dimension for both matrices, A and B.
326*> \endverbatim
327*>
328*> \param[out] K
329*> \verbatim
330*> K is INTEGER
331*> Factorization rank of the matrix A, i.e. the rank of
332*> the factor R, which is the same as the number of non-zero
333*> rows of the factor R. 0 <= K <= min(M,KMAX,N).
334*>
335*> K also represents the number of non-zero Householder
336*> vectors.
337*>
338*> NOTE: If K = 0, a) the arrays A and B are not modified;
339*> b) the array TAU(1:min(M,N)) is set to ZERO,
340*> if the matrix A does not contain NaN,
341*> otherwise the elements TAU(1:min(M,N))
342*> are undefined;
343*> c) the elements of the array JPIV are set
344*> as follows: for j = 1:N, JPIV(j) = j.
345*> \endverbatim
346*>
347*> \param[out] MAXC2NRMK
348*> \verbatim
349*> MAXC2NRMK is REAL
350*> The maximum column 2-norm of the residual matrix R22(K),
351*> when the factorization stopped at rank K. MAXC2NRMK >= 0.
352*>
353*> a) If K = 0, i.e. the factorization was not performed,
354*> the matrix A was not modified and is itself a residual
355*> matrix, then MAXC2NRMK equals the maximum column 2-norm
356*> of the original matrix A.
357*>
358*> b) If 0 < K < min(M,N), then MAXC2NRMK is returned.
359*>
360*> c) If K = min(M,N), i.e. the whole matrix A was
361*> factorized and there is no residual matrix,
362*> then MAXC2NRMK = 0.0.
363*>
364*> NOTE: MAXC2NRMK in the factorization step K would equal
365*> R(K+1,K+1) in the next factorization step K+1.
366*> \endverbatim
367*>
368*> \param[out] RELMAXC2NRMK
369*> \verbatim
370*> RELMAXC2NRMK is REAL
371*> The ratio MAXC2NRMK / MAXC2NRM of the maximum column
372*> 2-norm of the residual matrix R22(K) (when the factorization
373*> stopped at rank K) to the maximum column 2-norm of the
374*> whole original matrix A. RELMAXC2NRMK >= 0.
375*>
376*> a) If K = 0, i.e. the factorization was not performed,
377*> the matrix A was not modified and is itself a residual
378*> matrix, then RELMAXC2NRMK = 1.0.
379*>
380*> b) If 0 < K < min(M,N), then
381*> RELMAXC2NRMK = MAXC2NRMK / MAXC2NRM is returned.
382*>
383*> c) If K = min(M,N), i.e. the whole matrix A was
384*> factorized and there is no residual matrix,
385*> then RELMAXC2NRMK = 0.0.
386*>
387*> NOTE: RELMAXC2NRMK in the factorization step K would equal
388*> abs(R(K+1,K+1))/abs(R(1,1)) in the next factorization
389*> step K+1.
390*> \endverbatim
391*>
392*> \param[out] JPIV
393*> \verbatim
394*> JPIV is INTEGER array, dimension (N)
395*> Column pivot indices. For 1 <= j <= N, column j
396*> of the matrix A was interchanged with column JPIV(j).
397*>
398*> The elements of the array JPIV(1:N) are always set
399*> by the routine, for example, even when no columns
400*> were factorized, i.e. when K = 0, the elements are
401*> set as JPIV(j) = j for j = 1:N.
402*> \endverbatim
403*>
404*> \param[out] TAU
405*> \verbatim
406*> TAU is REAL array, dimension (min(M,N))
407*> The scalar factors of the elementary reflectors.
408*>
409*> If 0 < K <= min(M,N), only the elements TAU(1:K) of
410*> the array TAU are modified by the factorization.
411*> After the factorization computed, if no NaN was found
412*> during the factorization, the remaining elements
413*> TAU(K+1:min(M,N)) are set to zero, otherwise the
414*> elements TAU(K+1:min(M,N)) are not set and therefore
415*> undefined.
416*> ( If K = 0, all elements of TAU are set to zero, if
417*> the matrix A does not contain NaN. )
418*> \endverbatim
419*>
420*> \param[out] WORK
421*> \verbatim
422*> WORK is REAL array, dimension (MAX(1,LWORK))
423*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
424*> \endverbatim
425*>
426*> \param[in] LWORK
427*> \verbatim
428*> LWORK is INTEGER
429*> The dimension of the array WORK.
430*. LWORK >= (3*N + NRHS - 1)
431*> For optimal performance LWORK >= (2*N + NB*( N+NRHS+1 )),
432*> where NB is the optimal block size for SGEQP3RK returned
433*> by ILAENV. Minimal block size MINNB=2.
434*>
435*> NOTE: The decision, whether to use unblocked BLAS 2
436*> or blocked BLAS 3 code is based not only on the dimension
437*> LWORK of the availbale workspace WORK, but also also on the
438*> matrix A dimension N via crossover point NX returned
439*> by ILAENV. (For N less than NX, unblocked code should be
440*> used.)
441*>
442*> If LWORK = -1, then a workspace query is assumed;
443*> the routine only calculates the optimal size of the WORK
444*> array, returns this value as the first entry of the WORK
445*> array, and no error message related to LWORK is issued
446*> by XERBLA.
447*> \endverbatim
448*>
449*> \param[out] IWORK
450*> \verbatim
451*> IWORK is INTEGER array, dimension (N-1).
452*> Is a work array. ( IWORK is used to store indices
453*> of "bad" columns for norm downdating in the residual
454*> matrix in the blocked step auxiliary subroutine SLAQP3RK ).
455*> \endverbatim
456*>
457*> \param[out] INFO
458*> \verbatim
459*> INFO is INTEGER
460*> 1) INFO = 0: successful exit.
461*> 2) INFO < 0: if INFO = -i, the i-th argument had an
462*> illegal value.
463*> 3) If INFO = j_1, where 1 <= j_1 <= N, then NaN was
464*> detected and the routine stops the computation.
465*> The j_1-th column of the matrix A or the j_1-th
466*> element of array TAU contains the first occurrence
467*> of NaN in the factorization step K+1 ( when K columns
468*> have been factorized ).
469*>
470*> On exit:
471*> K is set to the number of
472*> factorized columns without
473*> exception.
474*> MAXC2NRMK is set to NaN.
475*> RELMAXC2NRMK is set to NaN.
476*> TAU(K+1:min(M,N)) is not set and contains undefined
477*> elements. If j_1=K+1, TAU(K+1)
478*> may contain NaN.
479*> 4) If INFO = j_2, where N+1 <= j_2 <= 2*N, then no NaN
480*> was detected, but +Inf (or -Inf) was detected and
481*> the routine continues the computation until completion.
482*> The (j_2-N)-th column of the matrix A contains the first
483*> occurrence of +Inf (or -Inf) in the factorization
484*> step K+1 ( when K columns have been factorized ).
485*> \endverbatim
486*
487* Authors:
488* ========
489*
490*> \author Univ. of Tennessee
491*> \author Univ. of California Berkeley
492*> \author Univ. of Colorado Denver
493*> \author NAG Ltd.
494*
495*> \ingroup geqp3rk
496*
497*> \par Further Details:
498* =====================
499*
500*> \verbatim
501*> SGEQP3RK is based on the same BLAS3 Householder QR factorization
502*> algorithm with column pivoting as in SGEQP3 routine which uses
503*> SLARFG routine to generate Householder reflectors
504*> for QR factorization.
505*>
506*> We can also write:
507*>
508*> A = A_approx(K) + A_residual(K)
509*>
510*> The low rank approximation matrix A(K)_approx from
511*> the truncated QR factorization of rank K of the matrix A is:
512*>
513*> A(K)_approx = Q(K) * ( R(K)_approx ) * P(K)**T
514*> ( 0 0 )
515*>
516*> = Q(K) * ( R11(K) R12(K) ) * P(K)**T
517*> ( 0 0 )
518*>
519*> The residual A_residual(K) of the matrix A is:
520*>
521*> A_residual(K) = Q(K) * ( 0 0 ) * P(K)**T =
522*> ( 0 R(K)_residual )
523*>
524*> = Q(K) * ( 0 0 ) * P(K)**T
525*> ( 0 R22(K) )
526*>
527*> The truncated (rank K) factorization guarantees that
528*> the maximum column 2-norm of A_residual(K) is less than
529*> or equal to MAXC2NRMK up to roundoff error.
530*>
531*> NOTE: An approximation of the null vectors
532*> of A can be easily computed from R11(K)
533*> and R12(K):
534*>
535*> Null( A(K) )_approx = P * ( inv(R11(K)) * R12(K) )
536*> ( -I )
537*>
538*> \endverbatim
539*
540*> \par References:
541* ================
542*> [1] A Level 3 BLAS QR factorization algorithm with column pivoting developed in 1996.
543*> G. Quintana-Orti, Depto. de Informatica, Universidad Jaime I, Spain.
544*> X. Sun, Computer Science Dept., Duke University, USA.
545*> C. H. Bischof, Math. and Comp. Sci. Div., Argonne National Lab, USA.
546*> A BLAS-3 version of the QR factorization with column pivoting.
547*> LAPACK Working Note 114
548*> \htmlonly
549*> <a href="https://www.netlib.org/lapack/lawnspdf/lawn114.pdf">https://www.netlib.org/lapack/lawnspdf/lawn114.pdf</a>
550*> \endhtmlonly
551*> and in
552*> SIAM J. Sci. Comput., 19(5):1486-1494, Sept. 1998.
553*> \htmlonly
554*> <a href="https://doi.org/10.1137/S1064827595296732">https://doi.org/10.1137/S1064827595296732</a>
555*> \endhtmlonly
556*>
557*> [2] A partial column norm updating strategy developed in 2006.
558*> Z. Drmac and Z. Bujanovic, Dept. of Math., University of Zagreb, Croatia.
559*> On the failure of rank revealing QR factorization software – a case study.
560*> LAPACK Working Note 176.
561*> \htmlonly
562*> <a href="http://www.netlib.org/lapack/lawnspdf/lawn176.pdf">http://www.netlib.org/lapack/lawnspdf/lawn176.pdf</a>
563*> \endhtmlonly
564*> and in
565*> ACM Trans. Math. Softw. 35, 2, Article 12 (July 2008), 28 pages.
566*> \htmlonly
567*> <a href="https://doi.org/10.1145/1377612.1377616">https://doi.org/10.1145/1377612.1377616</a>
568*> \endhtmlonly
569*
570*> \par Contributors:
571* ==================
572*>
573*> \verbatim
574*>
575*> November 2023, Igor Kozachenko, James Demmel,
576*> EECS Department,
577*> University of California, Berkeley, USA.
578*>
579*> \endverbatim
580*
581* =====================================================================
582 SUBROUTINE sgeqp3rk( M, N, NRHS, KMAX, ABSTOL, RELTOL, A, LDA,
583 $ K, MAXC2NRMK, RELMAXC2NRMK, JPIV, TAU,
584 $ WORK, LWORK, IWORK, INFO )
585 IMPLICIT NONE
586*
587* -- LAPACK computational routine --
588* -- LAPACK is a software package provided by Univ. of Tennessee, --
589* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
590*
591* .. Scalar Arguments ..
592 INTEGER INFO, K, KF, KMAX, LDA, LWORK, M, N, NRHS
593 REAL ABSTOL, MAXC2NRMK, RELMAXC2NRMK, RELTOL
594* ..
595* .. Array Arguments ..
596 INTEGER IWORK( * ), JPIV( * )
597 REAL A( LDA, * ), TAU( * ), WORK( * )
598* ..
599*
600* =====================================================================
601*
602* .. Parameters ..
603 INTEGER INB, INBMIN, IXOVER
604 PARAMETER ( INB = 1, inbmin = 2, ixover = 3 )
605 REAL ZERO, ONE, TWO
606 parameter( zero = 0.0e+0, one = 1.0e+0, two = 2.0e+0 )
607* ..
608* .. Local Scalars ..
609 LOGICAL LQUERY, DONE
610 INTEGER IINFO, IOFFSET, IWS, J, JB, JBF, JMAXB, JMAX,
611 $ jmaxc2nrm, kp1, lwkopt, minmn, n_sub, nb,
612 $ nbmin, nx
613 REAL EPS, HUGEVAL, MAXC2NRM, SAFMIN
614* ..
615* .. External Subroutines ..
616 EXTERNAL slaqp2rk, slaqp3rk, xerbla
617* ..
618* .. External Functions ..
619 LOGICAL SISNAN
620 INTEGER ISAMAX, ILAENV
621 REAL SLAMCH, SNRM2
622 EXTERNAL sisnan, slamch, snrm2, isamax, ilaenv
623* ..
624* .. Intrinsic Functions ..
625 INTRINSIC real, max, min
626* ..
627* .. Executable Statements ..
628*
629* Test input arguments
630* ====================
631*
632 info = 0
633 lquery = ( lwork.EQ.-1 )
634 IF( m.LT.0 ) THEN
635 info = -1
636 ELSE IF( n.LT.0 ) THEN
637 info = -2
638 ELSE IF( nrhs.LT.0 ) THEN
639 info = -3
640 ELSE IF( kmax.LT.0 ) THEN
641 info = -4
642 ELSE IF( sisnan( abstol ) ) THEN
643 info = -5
644 ELSE IF( sisnan( reltol ) ) THEN
645 info = -6
646 ELSE IF( lda.LT.max( 1, m ) ) THEN
647 info = -8
648 END IF
649*
650* If the input parameters M, N, NRHS, KMAX, LDA are valid:
651* a) Test the input workspace size LWORK for the minimum
652* size requirement IWS.
653* b) Determine the optimal block size NB and optimal
654* workspace size LWKOPT to be returned in WORK(1)
655* in case of (1) LWORK < IWS, (2) LQUERY = .TRUE.,
656* (3) when routine exits.
657* Here, IWS is the miminum workspace required for unblocked
658* code.
659*
660 IF( info.EQ.0 ) THEN
661 minmn = min( m, n )
662 IF( minmn.EQ.0 ) THEN
663 iws = 1
664 lwkopt = 1
665 ELSE
666*
667* Minimal workspace size in case of using only unblocked
668* BLAS 2 code in SLAQP2RK.
669* 1) SGEQP3RK and SLAQP2RK: 2*N to store full and partial
670* column 2-norms.
671* 2) SLAQP2RK: N+NRHS-1 to use in WORK array that is used
672* in SLARF subroutine inside SLAQP2RK to apply an
673* elementary reflector from the left.
674* TOTAL_WORK_SIZE = 3*N + NRHS - 1
675*
676 iws = 3*n + nrhs - 1
677*
678* Assign to NB optimal block size.
679*
680 nb = ilaenv( inb, 'SGEQP3RK', ' ', m, n, -1, -1 )
681*
682* A formula for the optimal workspace size in case of using
683* both unblocked BLAS 2 in SLAQP2RK and blocked BLAS 3 code
684* in SLAQP3RK.
685* 1) SGEQP3RK, SLAQP2RK, SLAQP3RK: 2*N to store full and
686* partial column 2-norms.
687* 2) SLAQP2RK: N+NRHS-1 to use in WORK array that is used
688* in SLARF subroutine to apply an elementary reflector
689* from the left.
690* 3) SLAQP3RK: NB*(N+NRHS) to use in the work array F that
691* is used to apply a block reflector from
692* the left.
693* 4) SLAQP3RK: NB to use in the auxilixary array AUX.
694* Sizes (2) and ((3) + (4)) should intersect, therefore
695* TOTAL_WORK_SIZE = 2*N + NB*( N+NRHS+1 ), given NBMIN=2.
696*
697 lwkopt = 2*n + nb*( n+nrhs+1 )
698 END IF
699 work( 1 ) = real( lwkopt )
700*
701 IF( ( lwork.LT.iws ) .AND. .NOT.lquery ) THEN
702 info = -15
703 END IF
704 END IF
705*
706* NOTE: The optimal workspace size is returned in WORK(1), if
707* the input parameters M, N, NRHS, KMAX, LDA are valid.
708*
709 IF( info.NE.0 ) THEN
710 CALL xerbla( 'SGEQP3RK', -info )
711 RETURN
712 ELSE IF( lquery ) THEN
713 RETURN
714 END IF
715*
716* Quick return if possible for M=0 or N=0.
717*
718 IF( minmn.EQ.0 ) THEN
719 k = 0
720 maxc2nrmk = zero
721 relmaxc2nrmk = zero
722 work( 1 ) = real( lwkopt )
723 RETURN
724 END IF
725*
726* ==================================================================
727*
728* Initialize column pivot array JPIV.
729*
730 DO j = 1, n
731 jpiv( j ) = j
732 END DO
733*
734* ==================================================================
735*
736* Initialize storage for partial and exact column 2-norms.
737* a) The elements WORK(1:N) are used to store partial column
738* 2-norms of the matrix A, and may decrease in each computation
739* step; initialize to the values of complete columns 2-norms.
740* b) The elements WORK(N+1:2*N) are used to store complete column
741* 2-norms of the matrix A, they are not changed during the
742* computation; initialize the values of complete columns 2-norms.
743*
744 DO j = 1, n
745 work( j ) = snrm2( m, a( 1, j ), 1 )
746 work( n+j ) = work( j )
747 END DO
748*
749* ==================================================================
750*
751* Compute the pivot column index and the maximum column 2-norm
752* for the whole original matrix stored in A(1:M,1:N).
753*
754 kp1 = isamax( n, work( 1 ), 1 )
755 maxc2nrm = work( kp1 )
756*
757* ==================================================================.
758*
759 IF( sisnan( maxc2nrm ) ) THEN
760*
761* Check if the matrix A contains NaN, set INFO parameter
762* to the column number where the first NaN is found and return
763* from the routine.
764*
765 k = 0
766 info = kp1
767*
768* Set MAXC2NRMK and RELMAXC2NRMK to NaN.
769*
770 maxc2nrmk = maxc2nrm
771 relmaxc2nrmk = maxc2nrm
772*
773* Array TAU is not set and contains undefined elements.
774*
775 work( 1 ) = real( lwkopt )
776 RETURN
777 END IF
778*
779* ===================================================================
780*
781 IF( maxc2nrm.EQ.zero ) THEN
782*
783* Check is the matrix A is a zero matrix, set array TAU and
784* return from the routine.
785*
786 k = 0
787 maxc2nrmk = zero
788 relmaxc2nrmk = zero
789*
790 DO j = 1, minmn
791 tau( j ) = zero
792 END DO
793*
794 work( 1 ) = real( lwkopt )
795 RETURN
796*
797 END IF
798*
799* ===================================================================
800*
801 hugeval = slamch( 'Overflow' )
802*
803 IF( maxc2nrm.GT.hugeval ) THEN
804*
805* Check if the matrix A contains +Inf or -Inf, set INFO parameter
806* to the column number, where the first +/-Inf is found plus N,
807* and continue the computation.
808*
809 info = n + kp1
810*
811 END IF
812*
813* ==================================================================
814*
815* Quick return if possible for the case when the first
816* stopping criterion is satisfied, i.e. KMAX = 0.
817*
818 IF( kmax.EQ.0 ) THEN
819 k = 0
820 maxc2nrmk = maxc2nrm
821 relmaxc2nrmk = one
822 DO j = 1, minmn
823 tau( j ) = zero
824 END DO
825 work( 1 ) = real( lwkopt )
826 RETURN
827 END IF
828*
829* ==================================================================
830*
831 eps = slamch('Epsilon')
832*
833* Adjust ABSTOL
834*
835 IF( abstol.GE.zero ) THEN
836 safmin = slamch('Safe minimum')
837 abstol = max( abstol, two*safmin )
838 END IF
839*
840* Adjust RELTOL
841*
842 IF( reltol.GE.zero ) THEN
843 reltol = max( reltol, eps )
844 END IF
845*
846* ===================================================================
847*
848* JMAX is the maximum index of the column to be factorized,
849* which is also limited by the first stopping criterion KMAX.
850*
851 jmax = min( kmax, minmn )
852*
853* ===================================================================
854*
855* Quick return if possible for the case when the second or third
856* stopping criterion for the whole original matrix is satified,
857* i.e. MAXC2NRM <= ABSTOL or RELMAXC2NRM <= RELTOL
858* (which is ONE <= RELTOL).
859*
860 IF( maxc2nrm.LE.abstol .OR. one.LE.reltol ) THEN
861*
862 k = 0
863 maxc2nrmk = maxc2nrm
864 relmaxc2nrmk = one
865*
866 DO j = 1, minmn
867 tau( j ) = zero
868 END DO
869*
870 work( 1 ) = real( lwkopt )
871 RETURN
872 END IF
873*
874* ==================================================================
875* Factorize columns
876* ==================================================================
877*
878* Determine the block size.
879*
880 nbmin = 2
881 nx = 0
882*
883 IF( ( nb.GT.1 ) .AND. ( nb.LT.minmn ) ) THEN
884*
885* Determine when to cross over from blocked to unblocked code.
886* (for N less than NX, unblocked code should be used).
887*
888 nx = max( 0, ilaenv( ixover, 'SGEQP3RK', ' ', m, n, -1, -1 ))
889*
890 IF( nx.LT.minmn ) THEN
891*
892* Determine if workspace is large enough for blocked code.
893*
894 IF( lwork.LT.lwkopt ) THEN
895*
896* Not enough workspace to use optimal block size that
897* is currently stored in NB.
898* Reduce NB and determine the minimum value of NB.
899*
900 nb = ( lwork-2*n ) / ( n+1 )
901 nbmin = max( 2, ilaenv( inbmin, 'SGEQP3RK', ' ', m, n,
902 $ -1, -1 ) )
903*
904 END IF
905 END IF
906 END IF
907*
908* ==================================================================
909*
910* DONE is the boolean flag to rerpresent the case when the
911* factorization completed in the block factorization routine,
912* before the end of the block.
913*
914 done = .false.
915*
916* J is the column index.
917*
918 j = 1
919*
920* (1) Use blocked code initially.
921*
922* JMAXB is the maximum column index of the block, when the
923* blocked code is used, is also limited by the first stopping
924* criterion KMAX.
925*
926 jmaxb = min( kmax, minmn - nx )
927*
928 IF( nb.GE.nbmin .AND. nb.LT.jmax .AND. jmaxb.GT.0 ) THEN
929*
930* Loop over the column blocks of the matrix A(1:M,1:JMAXB). Here:
931* J is the column index of a column block;
932* JB is the column block size to pass to block factorization
933* routine in a loop step;
934* JBF is the number of columns that were actually factorized
935* that was returned by the block factorization routine
936* in a loop step, JBF <= JB;
937* N_SUB is the number of columns in the submatrix;
938* IOFFSET is the number of rows that should not be factorized.
939*
940 DO WHILE( j.LE.jmaxb )
941*
942 jb = min( nb, jmaxb-j+1 )
943 n_sub = n-j+1
944 ioffset = j-1
945*
946* Factorize JB columns among the columns A(J:N).
947*
948 CALL slaqp3rk( m, n_sub, nrhs, ioffset, jb, abstol,
949 $ reltol, kp1, maxc2nrm, a( 1, j ), lda,
950 $ done, jbf, maxc2nrmk, relmaxc2nrmk,
951 $ jpiv( j ), tau( j ),
952 $ work( j ), work( n+j ),
953 $ work( 2*n+1 ), work( 2*n+jb+1 ),
954 $ n+nrhs-j+1, iwork, iinfo )
955*
956* Set INFO on the first occurence of Inf.
957*
958 IF( iinfo.GT.n_sub .AND. info.EQ.0 ) THEN
959 info = 2*ioffset + iinfo
960 END IF
961*
962 IF( done ) THEN
963*
964* Either the submatrix is zero before the end of the
965* column block, or ABSTOL or RELTOL criterion is
966* satisfied before the end of the column block, we can
967* return from the routine. Perform the following before
968* returning:
969* a) Set the number of factorized columns K,
970* K = IOFFSET + JBF from the last call of blocked
971* routine.
972* NOTE: 1) MAXC2NRMK and RELMAXC2NRMK are returned
973* by the block factorization routine;
974* 2) The remaining TAUs are set to ZERO by the
975* block factorization routine.
976*
977 k = ioffset + jbf
978*
979* Set INFO on the first occurrence of NaN, NaN takes
980* prcedence over Inf.
981*
982 IF( iinfo.LE.n_sub .AND. iinfo.GT.0 ) THEN
983 info = ioffset + iinfo
984 END IF
985*
986* Return from the routine.
987*
988 work( 1 ) = real( lwkopt )
989*
990 RETURN
991*
992 END IF
993*
994 j = j + jbf
995*
996 END DO
997*
998 END IF
999*
1000* Use unblocked code to factor the last or only block.
1001* J = JMAX+1 means we factorized the maximum possible number of
1002* columns, that is in ELSE clause we need to compute
1003* the MAXC2NORM and RELMAXC2NORM to return after we processed
1004* the blocks.
1005*
1006 IF( j.LE.jmax ) THEN
1007*
1008* N_SUB is the number of columns in the submatrix;
1009* IOFFSET is the number of rows that should not be factorized.
1010*
1011 n_sub = n-j+1
1012 ioffset = j-1
1013*
1014 CALL slaqp2rk( m, n_sub, nrhs, ioffset, jmax-j+1,
1015 $ abstol, reltol, kp1, maxc2nrm, a( 1, j ), lda,
1016 $ kf, maxc2nrmk, relmaxc2nrmk, jpiv( j ),
1017 $ tau( j ), work( j ), work( n+j ),
1018 $ work( 2*n+1 ), iinfo )
1019*
1020* ABSTOL or RELTOL criterion is satisfied when the number of
1021* the factorized columns KF is smaller then the number
1022* of columns JMAX-J+1 supplied to be factorized by the
1023* unblocked routine, we can return from
1024* the routine. Perform the following before returning:
1025* a) Set the number of factorized columns K,
1026* b) MAXC2NRMK and RELMAXC2NRMK are returned by the
1027* unblocked factorization routine above.
1028*
1029 k = j - 1 + kf
1030*
1031* Set INFO on the first exception occurence.
1032*
1033* Set INFO on the first exception occurence of Inf or NaN,
1034* (NaN takes precedence over Inf).
1035*
1036 IF( iinfo.GT.n_sub .AND. info.EQ.0 ) THEN
1037 info = 2*ioffset + iinfo
1038 ELSE IF( iinfo.LE.n_sub .AND. iinfo.GT.0 ) THEN
1039 info = ioffset + iinfo
1040 END IF
1041*
1042 ELSE
1043*
1044* Compute the return values for blocked code.
1045*
1046* Set the number of factorized columns if the unblocked routine
1047* was not called.
1048*
1049 k = jmax
1050*
1051* If there exits a residual matrix after the blocked code:
1052* 1) compute the values of MAXC2NRMK, RELMAXC2NRMK of the
1053* residual matrix, otherwise set them to ZERO;
1054* 2) Set TAU(K+1:MINMN) to ZERO.
1055*
1056 IF( k.LT.minmn ) THEN
1057 jmaxc2nrm = k + isamax( n-k, work( k+1 ), 1 )
1058 maxc2nrmk = work( jmaxc2nrm )
1059 IF( k.EQ.0 ) THEN
1060 relmaxc2nrmk = one
1061 ELSE
1062 relmaxc2nrmk = maxc2nrmk / maxc2nrm
1063 END IF
1064*
1065 DO j = k + 1, minmn
1066 tau( j ) = zero
1067 END DO
1068*
1069 END IF
1070*
1071* END IF( J.LE.JMAX ) THEN
1072*
1073 END IF
1074*
1075 work( 1 ) = real( lwkopt )
1076*
1077 RETURN
1078*
1079* End of SGEQP3RK
1080*
1081 END
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine sgeqp3rk(m, n, nrhs, kmax, abstol, reltol, a, lda, k, maxc2nrmk, relmaxc2nrmk, jpiv, tau, work, lwork, iwork, info)
SGEQP3RK computes a truncated Householder QR factorization with column pivoting of a real m-by-n matr...
Definition sgeqp3rk.f:585
subroutine slaqp2rk(m, n, nrhs, ioffset, kmax, abstol, reltol, kp1, maxc2nrm, a, lda, k, maxc2nrmk, relmaxc2nrmk, jpiv, tau, vn1, vn2, work, info)
SLAQP2RK computes truncated QR factorization with column pivoting of a real matrix block using Level ...
Definition slaqp2rk.f:344
subroutine slaqp3rk(m, n, nrhs, ioffset, nb, abstol, reltol, kp1, maxc2nrm, a, lda, done, kb, maxc2nrmk, relmaxc2nrmk, jpiv, tau, vn1, vn2, auxv, f, ldf, iwork, info)
SLAQP3RK computes a step of truncated QR factorization with column pivoting of a real m-by-n matrix A...
Definition slaqp3rk.f:402