LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ ctpt01()

subroutine ctpt01 ( character uplo,
character diag,
integer n,
complex, dimension( * ) ap,
complex, dimension( * ) ainvp,
real rcond,
real, dimension( * ) rwork,
real resid )

CTPT01

Purpose:
!>
!> CTPT01 computes the residual for a triangular matrix A times its
!> inverse when A is stored in packed format:
!>    RESID = norm(A*AINV - I) / ( N * norm(A) * norm(AINV) * EPS ),
!> where EPS is the machine epsilon.
!> 
Parameters
[in]UPLO
!>          UPLO is CHARACTER*1
!>          Specifies whether the matrix A is upper or lower triangular.
!>          = 'U':  Upper triangular
!>          = 'L':  Lower triangular
!> 
[in]DIAG
!>          DIAG is CHARACTER*1
!>          Specifies whether or not the matrix A is unit triangular.
!>          = 'N':  Non-unit triangular
!>          = 'U':  Unit triangular
!> 
[in]N
!>          N is INTEGER
!>          The order of the matrix A.  N >= 0.
!> 
[in]AP
!>          AP is COMPLEX array, dimension (N*(N+1)/2)
!>          The original upper or lower triangular matrix A, packed
!>          columnwise in a linear array.  The j-th column of A is stored
!>          in the array AP as follows:
!>          if UPLO = 'U', AP((j-1)*j/2 + i) = A(i,j) for 1<=i<=j;
!>          if UPLO = 'L',
!>             AP((j-1)*(n-j) + j*(j+1)/2 + i-j) = A(i,j) for j<=i<=n.
!> 
[in]AINVP
!>          AINVP is COMPLEX array, dimension (N*(N+1)/2)
!>          On entry, the (triangular) inverse of the matrix A, packed
!>          columnwise in a linear array as in AP.
!>          On exit, the contents of AINVP are destroyed.
!> 
[out]RCOND
!>          RCOND is REAL
!>          The reciprocal condition number of A, computed as
!>          1/(norm(A) * norm(AINV)).
!> 
[out]RWORK
!>          RWORK is REAL array, dimension (N)
!> 
[out]RESID
!>          RESID is REAL
!>          norm(A*AINV - I) / ( N * norm(A) * norm(AINV) * EPS )
!> 
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 108 of file ctpt01.f.

109*
110* -- LAPACK test routine --
111* -- LAPACK is a software package provided by Univ. of Tennessee, --
112* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
113*
114* .. Scalar Arguments ..
115 CHARACTER DIAG, UPLO
116 INTEGER N
117 REAL RCOND, RESID
118* ..
119* .. Array Arguments ..
120 REAL RWORK( * )
121 COMPLEX AINVP( * ), AP( * )
122* ..
123*
124* =====================================================================
125*
126* .. Parameters ..
127 REAL ZERO, ONE
128 parameter( zero = 0.0e+0, one = 1.0e+0 )
129* ..
130* .. Local Scalars ..
131 LOGICAL UNITD
132 INTEGER J, JC
133 REAL AINVNM, ANORM, EPS
134* ..
135* .. External Functions ..
136 LOGICAL LSAME
137 REAL CLANTP, SLAMCH
138 EXTERNAL lsame, clantp, slamch
139* ..
140* .. External Subroutines ..
141 EXTERNAL ctpmv
142* ..
143* .. Intrinsic Functions ..
144 INTRINSIC real
145* ..
146* .. Executable Statements ..
147*
148* Quick exit if N = 0.
149*
150 IF( n.LE.0 ) THEN
151 rcond = one
152 resid = zero
153 RETURN
154 END IF
155*
156* Exit with RESID = 1/EPS if ANORM = 0 or AINVNM = 0.
157*
158 eps = slamch( 'Epsilon' )
159 anorm = clantp( '1', uplo, diag, n, ap, rwork )
160 ainvnm = clantp( '1', uplo, diag, n, ainvp, rwork )
161 IF( anorm.LE.zero .OR. ainvnm.LE.zero ) THEN
162 rcond = zero
163 resid = one / eps
164 RETURN
165 END IF
166 rcond = ( one / anorm ) / ainvnm
167*
168* Compute A * AINV, overwriting AINV.
169*
170 unitd = lsame( diag, 'U' )
171 IF( lsame( uplo, 'U' ) ) THEN
172 jc = 1
173 DO 10 j = 1, n
174 IF( unitd )
175 $ ainvp( jc+j-1 ) = one
176*
177* Form the j-th column of A*AINV.
178*
179 CALL ctpmv( 'Upper', 'No transpose', diag, j, ap,
180 $ ainvp( jc ), 1 )
181*
182* Subtract 1 from the diagonal to form A*AINV - I.
183*
184 ainvp( jc+j-1 ) = ainvp( jc+j-1 ) - one
185 jc = jc + j
186 10 CONTINUE
187 ELSE
188 jc = 1
189 DO 20 j = 1, n
190 IF( unitd )
191 $ ainvp( jc ) = one
192*
193* Form the j-th column of A*AINV.
194*
195 CALL ctpmv( 'Lower', 'No transpose', diag, n-j+1, ap( jc ),
196 $ ainvp( jc ), 1 )
197*
198* Subtract 1 from the diagonal to form A*AINV - I.
199*
200 ainvp( jc ) = ainvp( jc ) - one
201 jc = jc + n - j + 1
202 20 CONTINUE
203 END IF
204*
205* Compute norm(A*AINV - I) / (N * norm(A) * norm(AINV) * EPS)
206*
207 resid = clantp( '1', uplo, 'Non-unit', n, ainvp, rwork )
208*
209 resid = ( ( resid*rcond ) / real( n ) ) / eps
210*
211 RETURN
212*
213* End of CTPT01
214*
real function slamch(cmach)
SLAMCH
Definition slamch.f:68
real function clantp(norm, uplo, diag, n, ap, work)
CLANTP returns the value of the 1-norm, or the Frobenius norm, or the infinity norm,...
Definition clantp.f:124
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48
subroutine ctpmv(uplo, trans, diag, n, ap, x, incx)
CTPMV
Definition ctpmv.f:142
Here is the call graph for this function:
Here is the caller graph for this function: