LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ dsptrd()

subroutine dsptrd ( character uplo,
integer n,
double precision, dimension( * ) ap,
double precision, dimension( * ) d,
double precision, dimension( * ) e,
double precision, dimension( * ) tau,
integer info )

DSPTRD

Download DSPTRD + dependencies [TGZ] [ZIP] [TXT]

Purpose:
!>
!> DSPTRD reduces a real symmetric matrix A stored in packed form to
!> symmetric tridiagonal form T by an orthogonal similarity
!> transformation: Q**T * A * Q = T.
!> 
Parameters
[in]UPLO
!>          UPLO is CHARACTER*1
!>          = 'U':  Upper triangle of A is stored;
!>          = 'L':  Lower triangle of A is stored.
!> 
[in]N
!>          N is INTEGER
!>          The order of the matrix A.  N >= 0.
!> 
[in,out]AP
!>          AP is DOUBLE PRECISION array, dimension (N*(N+1)/2)
!>          On entry, the upper or lower triangle of the symmetric matrix
!>          A, packed columnwise in a linear array.  The j-th column of A
!>          is stored in the array AP as follows:
!>          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
!>          if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
!>          On exit, if UPLO = 'U', the diagonal and first superdiagonal
!>          of A are overwritten by the corresponding elements of the
!>          tridiagonal matrix T, and the elements above the first
!>          superdiagonal, with the array TAU, represent the orthogonal
!>          matrix Q as a product of elementary reflectors; if UPLO
!>          = 'L', the diagonal and first subdiagonal of A are over-
!>          written by the corresponding elements of the tridiagonal
!>          matrix T, and the elements below the first subdiagonal, with
!>          the array TAU, represent the orthogonal matrix Q as a product
!>          of elementary reflectors. See Further Details.
!> 
[out]D
!>          D is DOUBLE PRECISION array, dimension (N)
!>          The diagonal elements of the tridiagonal matrix T:
!>          D(i) = A(i,i).
!> 
[out]E
!>          E is DOUBLE PRECISION array, dimension (N-1)
!>          The off-diagonal elements of the tridiagonal matrix T:
!>          E(i) = A(i,i+1) if UPLO = 'U', E(i) = A(i+1,i) if UPLO = 'L'.
!> 
[out]TAU
!>          TAU is DOUBLE PRECISION array, dimension (N-1)
!>          The scalar factors of the elementary reflectors (see Further
!>          Details).
!> 
[out]INFO
!>          INFO is INTEGER
!>          = 0:  successful exit
!>          < 0:  if INFO = -i, the i-th argument had an illegal value
!> 
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
!>
!>  If UPLO = 'U', the matrix Q is represented as a product of elementary
!>  reflectors
!>
!>     Q = H(n-1) . . . H(2) H(1).
!>
!>  Each H(i) has the form
!>
!>     H(i) = I - tau * v * v**T
!>
!>  where tau is a real scalar, and v is a real vector with
!>  v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in AP,
!>  overwriting A(1:i-1,i+1), and tau is stored in TAU(i).
!>
!>  If UPLO = 'L', the matrix Q is represented as a product of elementary
!>  reflectors
!>
!>     Q = H(1) H(2) . . . H(n-1).
!>
!>  Each H(i) has the form
!>
!>     H(i) = I - tau * v * v**T
!>
!>  where tau is a real scalar, and v is a real vector with
!>  v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in AP,
!>  overwriting A(i+2:n,i), and tau is stored in TAU(i).
!> 

Definition at line 147 of file dsptrd.f.

148*
149* -- LAPACK computational routine --
150* -- LAPACK is a software package provided by Univ. of Tennessee, --
151* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
152*
153* .. Scalar Arguments ..
154 CHARACTER UPLO
155 INTEGER INFO, N
156* ..
157* .. Array Arguments ..
158 DOUBLE PRECISION AP( * ), D( * ), E( * ), TAU( * )
159* ..
160*
161* =====================================================================
162*
163* .. Parameters ..
164 DOUBLE PRECISION ONE, ZERO, HALF
165 parameter( one = 1.0d0, zero = 0.0d0,
166 $ half = 1.0d0 / 2.0d0 )
167* ..
168* .. Local Scalars ..
169 LOGICAL UPPER
170 INTEGER I, I1, I1I1, II
171 DOUBLE PRECISION ALPHA, TAUI
172* ..
173* .. External Subroutines ..
174 EXTERNAL daxpy, dlarfg, dspmv, dspr2, xerbla
175* ..
176* .. External Functions ..
177 LOGICAL LSAME
178 DOUBLE PRECISION DDOT
179 EXTERNAL lsame, ddot
180* ..
181* .. Executable Statements ..
182*
183* Test the input parameters
184*
185 info = 0
186 upper = lsame( uplo, 'U' )
187 IF( .NOT.upper .AND. .NOT.lsame( uplo, 'L' ) ) THEN
188 info = -1
189 ELSE IF( n.LT.0 ) THEN
190 info = -2
191 END IF
192 IF( info.NE.0 ) THEN
193 CALL xerbla( 'DSPTRD', -info )
194 RETURN
195 END IF
196*
197* Quick return if possible
198*
199 IF( n.LE.0 )
200 $ RETURN
201*
202 IF( upper ) THEN
203*
204* Reduce the upper triangle of A.
205* I1 is the index in AP of A(1,I+1).
206*
207 i1 = n*( n-1 ) / 2 + 1
208 DO 10 i = n - 1, 1, -1
209*
210* Generate elementary reflector H(i) = I - tau * v * v**T
211* to annihilate A(1:i-1,i+1)
212*
213 CALL dlarfg( i, ap( i1+i-1 ), ap( i1 ), 1, taui )
214 e( i ) = ap( i1+i-1 )
215*
216 IF( taui.NE.zero ) THEN
217*
218* Apply H(i) from both sides to A(1:i,1:i)
219*
220 ap( i1+i-1 ) = one
221*
222* Compute y := tau * A * v storing y in TAU(1:i)
223*
224 CALL dspmv( uplo, i, taui, ap, ap( i1 ), 1, zero, tau,
225 $ 1 )
226*
227* Compute w := y - 1/2 * tau * (y**T *v) * v
228*
229 alpha = -half*taui*ddot( i, tau, 1, ap( i1 ), 1 )
230 CALL daxpy( i, alpha, ap( i1 ), 1, tau, 1 )
231*
232* Apply the transformation as a rank-2 update:
233* A := A - v * w**T - w * v**T
234*
235 CALL dspr2( uplo, i, -one, ap( i1 ), 1, tau, 1, ap )
236*
237 ap( i1+i-1 ) = e( i )
238 END IF
239 d( i+1 ) = ap( i1+i )
240 tau( i ) = taui
241 i1 = i1 - i
242 10 CONTINUE
243 d( 1 ) = ap( 1 )
244 ELSE
245*
246* Reduce the lower triangle of A. II is the index in AP of
247* A(i,i) and I1I1 is the index of A(i+1,i+1).
248*
249 ii = 1
250 DO 20 i = 1, n - 1
251 i1i1 = ii + n - i + 1
252*
253* Generate elementary reflector H(i) = I - tau * v * v**T
254* to annihilate A(i+2:n,i)
255*
256 CALL dlarfg( n-i, ap( ii+1 ), ap( ii+2 ), 1, taui )
257 e( i ) = ap( ii+1 )
258*
259 IF( taui.NE.zero ) THEN
260*
261* Apply H(i) from both sides to A(i+1:n,i+1:n)
262*
263 ap( ii+1 ) = one
264*
265* Compute y := tau * A * v storing y in TAU(i:n-1)
266*
267 CALL dspmv( uplo, n-i, taui, ap( i1i1 ), ap( ii+1 ),
268 $ 1,
269 $ zero, tau( i ), 1 )
270*
271* Compute w := y - 1/2 * tau * (y**T *v) * v
272*
273 alpha = -half*taui*ddot( n-i, tau( i ), 1, ap( ii+1 ),
274 $ 1 )
275 CALL daxpy( n-i, alpha, ap( ii+1 ), 1, tau( i ), 1 )
276*
277* Apply the transformation as a rank-2 update:
278* A := A - v * w**T - w * v**T
279*
280 CALL dspr2( uplo, n-i, -one, ap( ii+1 ), 1, tau( i ),
281 $ 1,
282 $ ap( i1i1 ) )
283*
284 ap( ii+1 ) = e( i )
285 END IF
286 d( i ) = ap( ii )
287 tau( i ) = taui
288 ii = i1i1
289 20 CONTINUE
290 d( n ) = ap( ii )
291 END IF
292*
293 RETURN
294*
295* End of DSPTRD
296*
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine daxpy(n, da, dx, incx, dy, incy)
DAXPY
Definition daxpy.f:89
double precision function ddot(n, dx, incx, dy, incy)
DDOT
Definition ddot.f:82
subroutine dspmv(uplo, n, alpha, ap, x, incx, beta, y, incy)
DSPMV
Definition dspmv.f:147
subroutine dspr2(uplo, n, alpha, x, incx, y, incy, ap)
DSPR2
Definition dspr2.f:142
subroutine dlarfg(n, alpha, x, incx, tau)
DLARFG generates an elementary reflector (Householder matrix).
Definition dlarfg.f:104
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48
Here is the call graph for this function:
Here is the caller graph for this function: