LAPACK  3.10.0
LAPACK: Linear Algebra PACKage
lapacke_zgejsv.c
Go to the documentation of this file.
1 /*****************************************************************************
2  Copyright (c) 2014, Intel Corp.
3  All rights reserved.
4 
5  Redistribution and use in source and binary forms, with or without
6  modification, are permitted provided that the following conditions are met:
7 
8  * Redistributions of source code must retain the above copyright notice,
9  this list of conditions and the following disclaimer.
10  * Redistributions in binary form must reproduce the above copyright
11  notice, this list of conditions and the following disclaimer in the
12  documentation and/or other materials provided with the distribution.
13  * Neither the name of Intel Corporation nor the names of its contributors
14  may be used to endorse or promote products derived from this software
15  without specific prior written permission.
16 
17  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
27  THE POSSIBILITY OF SUCH DAMAGE.
28 *****************************************************************************
29 * Contents: Native high-level C interface to LAPACK function zgejsv
30 * Author: Intel Corporation
31 *****************************************************************************/
32 
33 #include "lapacke_utils.h"
34 
35 lapack_int LAPACKE_zgejsv( int matrix_layout, char joba, char jobu, char jobv,
36  char jobr, char jobt, char jobp, lapack_int m,
37  lapack_int n, lapack_complex_double* a, lapack_int lda, double* sva,
39  double* stat, lapack_int* istat )
40 {
41  lapack_int info = 0;
42  lapack_int lwork = (
43  // 1.1
44  ( LAPACKE_lsame( jobu, 'n' ) && LAPACKE_lsame( jobv, 'n' ) &&
45  ( LAPACKE_lsame( jobt, 't' ) || LAPACKE_lsame( joba, 'f' ) || LAPACKE_lsame( joba, 'g' ) )) ? 2*n+1 :
46 
47  //1.2
48  ( ( LAPACKE_lsame( jobu, 'n' ) && LAPACKE_lsame( jobv, 'n' ) &&
49  !( LAPACKE_lsame( jobt, 't' ) || LAPACKE_lsame( joba, 'f' ) || LAPACKE_lsame( joba, 'g' ) )) ? n*n+3*n :
50 
51  //2.1
52  ( ( ( LAPACKE_lsame( jobv, 'v' ) || LAPACKE_lsame( jobv, 'j' ) ) &&
53  !( LAPACKE_lsame( jobu, 'u') || LAPACKE_lsame( jobu, 'f' ) )&&
54  ( LAPACKE_lsame( jobt, 't' ) || LAPACKE_lsame( joba, 'f' ) || LAPACKE_lsame( joba, 'g' ) ))? 3*n :
55 
56 
57  //2.2
58  ( ( ( LAPACKE_lsame( jobv, 'v' ) || LAPACKE_lsame( jobv, 'j' ) ) &&
59  !( LAPACKE_lsame( jobu, 'u' ) || LAPACKE_lsame( jobu, 'f' ) ) &&
60  !( LAPACKE_lsame( jobt, 't' ) || LAPACKE_lsame( joba, 'f' ) || LAPACKE_lsame( joba, 'g' ) ))? 3*n :
61 
62  //3.1
63  ( ( ( LAPACKE_lsame( jobu, 'u' ) || LAPACKE_lsame( jobu, 'f' )) &&
64  !( LAPACKE_lsame( jobv, 'v' ) || LAPACKE_lsame( jobv, 'j' )) &&
65  ( LAPACKE_lsame( jobt, 't' ) || LAPACKE_lsame( joba, 'f' ) || LAPACKE_lsame( joba, 'g' ) ))? 3*n :
66 
67  //3.2
68  ( ( ( LAPACKE_lsame( jobu, 'u' ) || LAPACKE_lsame( jobu, 'f' )) &&
69  !(LAPACKE_lsame( jobv, 'v' ) || LAPACKE_lsame( jobv, 'j' )) &&
70  !(LAPACKE_lsame( jobt, 't' ) || LAPACKE_lsame( joba, 'f' ) || LAPACKE_lsame( joba, 'g' ) ))? 3*n :
71 
72  //4.1
73  ( ( ( LAPACKE_lsame( jobu, 'u' ) || LAPACKE_lsame( jobu, 'f' ) ) &&
74  ( LAPACKE_lsame( jobv, 'v' ) || LAPACKE_lsame( jobv, 'j' ) ) &&
75  ( LAPACKE_lsame( jobt, 't' ) || LAPACKE_lsame( joba, 'f' ) || LAPACKE_lsame( joba, 'g' ) ))? 5*n+2*n*n :
76 
77  //4.2
78  ( ( ( LAPACKE_lsame( jobu, 'u' ) || LAPACKE_lsame( jobu, 'f' ) ) &&
79  ( LAPACKE_lsame( jobv, 'v' ) || LAPACKE_lsame( jobv, 'j' ) ) &&
80  ( LAPACKE_lsame( jobt, 't' ) || LAPACKE_lsame( joba, 'f' ) || LAPACKE_lsame( joba, 'g' ) ))? 4*n*n:
81  1) ) ) ) ) ) ) );
82  lapack_int lrwork = (
83  // 1.1
84  ( LAPACKE_lsame( jobu, 'n' ) && LAPACKE_lsame( jobv, 'n' ) &&
85  ( LAPACKE_lsame( jobt, 't' ) || LAPACKE_lsame( joba, 'f' ) || LAPACKE_lsame( joba, 'g' ) )) ? MAX(7,n+2*m) :
86 
87  //1.2
88  ( ( LAPACKE_lsame( jobu, 'n' ) && LAPACKE_lsame( jobv, 'n' ) &&
89  !( LAPACKE_lsame( jobt, 't' ) || LAPACKE_lsame( joba, 'f' ) || LAPACKE_lsame( joba, 'g' ) )) ? MAX(7,2*n) :
90 
91  //2.1
92  ( ( ( LAPACKE_lsame( jobv, 'v' ) || LAPACKE_lsame( jobv, 'j' ) ) &&
93  !( LAPACKE_lsame( jobu, 'u') || LAPACKE_lsame( jobu, 'f' ) ) &&
94  ( LAPACKE_lsame( jobt, 't' ) || LAPACKE_lsame( joba, 'f' ) || LAPACKE_lsame( joba, 'g' ) ))? MAX( 7, n+ 2*m ) :
95 
96 
97  //2.2
98  ( ( ( LAPACKE_lsame( jobv, 'v' ) || LAPACKE_lsame( jobv, 'j' ) ) &&
99  !( LAPACKE_lsame( jobu, 'u' ) || LAPACKE_lsame( jobu, 'f' ) ) &&
100  !( LAPACKE_lsame( jobt, 't' ) || LAPACKE_lsame( joba, 'f' ) || LAPACKE_lsame( joba, 'g' ) ))? MAX(7,2*n) :
101 
102  //3.1
103  ( ( ( LAPACKE_lsame( jobu, 'u' ) || LAPACKE_lsame( jobu, 'f' )) &&
104  !( LAPACKE_lsame( jobv, 'v' ) || LAPACKE_lsame( jobv, 'j' )) &&
105  ( LAPACKE_lsame( jobt, 't' ) || LAPACKE_lsame( joba, 'f' ) || LAPACKE_lsame( joba, 'g' ) ))? MAX( 7, n+ 2*m ) :
106 
107  //3.2
108  ( ( ( LAPACKE_lsame( jobu, 'u' ) || LAPACKE_lsame( jobu, 'f' )) &&
109  !(LAPACKE_lsame( jobv, 'v' ) || LAPACKE_lsame( jobv, 'j' )) &&
110  !(LAPACKE_lsame( jobt, 't' ) || LAPACKE_lsame( joba, 'f' ) || LAPACKE_lsame( joba, 'g' ) ))? MAX(7,2*n) :
111 
112  //4.1
113  ( ( ( LAPACKE_lsame( jobu, 'u' ) || LAPACKE_lsame( jobu, 'f' ) ) &&
114  ( LAPACKE_lsame( jobv, 'v' ) || LAPACKE_lsame( jobv, 'j' ) ) &&
115  ( LAPACKE_lsame( jobt, 't' ) || LAPACKE_lsame( joba, 'f' ) || LAPACKE_lsame( joba, 'g' ) ))? MAX( 7, n+ 2*m ) :
116 
117  //4.2
118  ( ( ( LAPACKE_lsame( jobu, 'u' ) || LAPACKE_lsame( jobu, 'f' ) ) &&
119  ( LAPACKE_lsame( jobv, 'v' ) || LAPACKE_lsame( jobv, 'j' ) ) &&
120  ( LAPACKE_lsame( jobt, 't' ) || LAPACKE_lsame( joba, 'f' ) || LAPACKE_lsame( joba, 'g' ) ))? MAX(7,2*n) :
121  7) ) ) ) ) ) ) );
122  lapack_int* iwork = NULL;
123  double* rwork = NULL;
124  lapack_complex_double* cwork = NULL;
125  lapack_int i;
126  if( matrix_layout != LAPACK_COL_MAJOR && matrix_layout != LAPACK_ROW_MAJOR ) {
127  LAPACKE_xerbla( "LAPACKE_zgejsv", -1 );
128  return -1;
129  }
130 #ifndef LAPACK_DISABLE_NAN_CHECK
131  if( LAPACKE_get_nancheck() ) {
132  /* Optionally check input matrices for NaNs */
133  if( LAPACKE_zge_nancheck( matrix_layout, m, n, a, lda ) ) {
134  return -10;
135  }
136  }
137 #endif
138  /* Allocate memory for working array(s) */
139  iwork = (lapack_int*)LAPACKE_malloc( sizeof(lapack_int) * MAX(3,m+2*n) );
140  if( iwork == NULL ) {
142  goto exit_level_0;
143  }
144  lwork = MAX( lwork, 1 );
145  { /* FIXUP LWORK */
146  int want_u = LAPACKE_lsame( jobu, 'u' ) || LAPACKE_lsame( jobu, 'f' );
147  int want_v = LAPACKE_lsame( jobv, 'v' ) || LAPACKE_lsame( jobv, 'j' );
148  int want_sce = LAPACKE_lsame( joba, 'e' ) || LAPACKE_lsame( joba, 'g' );
149  if( !want_u && !want_v && !want_sce ) lwork = MAX( lwork, 2*n+1 ); // 1.1
150  if( !want_u && !want_v && want_sce ) lwork = MAX( lwork, n*n+3*n ); // 1.2
151  if( want_u && LAPACKE_lsame( jobv, 'v' ) ) lwork = MAX( lwork, 5*n+2*n*n ); // 4.1
152  if( want_u && LAPACKE_lsame( jobv, 'j' ) ) lwork = MAX( lwork, 4*n+n*n ); // 4.2
153  }
154  cwork = (lapack_complex_double*)LAPACKE_malloc( sizeof(lapack_complex_double) * lwork );
155  if( cwork == NULL ) {
157  goto exit_level_1;
158  }
159  lrwork = MAX3( lrwork, 7, n+2*m );
160  rwork = (double*)LAPACKE_malloc( sizeof(double) * lrwork );
161  if( rwork == NULL ) {
163  goto exit_level_2;
164  }
165  /* Call middle-level interface */
166  info = LAPACKE_zgejsv_work( matrix_layout, joba, jobu, jobv, jobr, jobt,
167  jobp, m, n, a, lda, sva, u, ldu, v, ldv, cwork,
168  lwork, rwork, lrwork, iwork );
169  /* Backup significant data from working array(s) */
170  for( i=0; i<7; i++ ) {
171  stat[i] = rwork[i];
172  }
173  for( i=0; i<3; i++ ) {
174  istat[i] = iwork[i];
175  }
176  /* Release memory and exit */
177  LAPACKE_free( cwork );
178 exit_level_2:
179  LAPACKE_free( rwork );
180 exit_level_1:
181  LAPACKE_free( iwork );
182 exit_level_0:
183  if( info == LAPACK_WORK_MEMORY_ERROR ) {
184  LAPACKE_xerbla( "LAPACKE_zgejsv", info );
185  }
186  return info;
187 }
#define lapack_int
Definition: lapack.h:83
#define lapack_complex_double
Definition: lapack.h:63
#define LAPACK_WORK_MEMORY_ERROR
Definition: lapacke.h:55
#define LAPACK_COL_MAJOR
Definition: lapacke.h:53
#define LAPACKE_free(p)
Definition: lapacke.h:46
#define LAPACK_ROW_MAJOR
Definition: lapacke.h:52
int LAPACKE_get_nancheck(void)
#define LAPACKE_malloc(size)
Definition: lapacke.h:43
lapack_int LAPACKE_zgejsv_work(int matrix_layout, char joba, char jobu, char jobv, char jobr, char jobt, char jobp, lapack_int m, lapack_int n, lapack_complex_double *a, lapack_int lda, double *sva, lapack_complex_double *u, lapack_int ldu, lapack_complex_double *v, lapack_int ldv, lapack_complex_double *cwork, lapack_int lwork, double *work, lapack_int lrwork, lapack_int *iwork)
lapack_logical LAPACKE_lsame(char ca, char cb)
Definition: lapacke_lsame.c:35
void LAPACKE_xerbla(const char *name, lapack_int info)
lapack_logical LAPACKE_zge_nancheck(int matrix_layout, lapack_int m, lapack_int n, const lapack_complex_double *a, lapack_int lda)
#define MAX3(x, y, z)
Definition: lapacke_utils.h:52
#define MAX(x, y)
Definition: lapacke_utils.h:46
lapack_int LAPACKE_zgejsv(int matrix_layout, char joba, char jobu, char jobv, char jobr, char jobt, char jobp, lapack_int m, lapack_int n, lapack_complex_double *a, lapack_int lda, double *sva, lapack_complex_double *u, lapack_int ldu, lapack_complex_double *v, lapack_int ldv, double *stat, lapack_int *istat)