LAPACK  3.10.0
LAPACK: Linear Algebra PACKage

◆ cgelqt()

subroutine cgelqt ( integer  M,
integer  N,
integer  MB,
complex, dimension( lda, * )  A,
integer  LDA,
complex, dimension( ldt, * )  T,
integer  LDT,
complex, dimension( * )  WORK,
integer  INFO 
)

CGELQT

Purpose:
 CGELQT computes a blocked LQ factorization of a complex M-by-N matrix A
 using the compact WY representation of Q.
Parameters
[in]M
          M is INTEGER
          The number of rows of the matrix A.  M >= 0.
[in]N
          N is INTEGER
          The number of columns of the matrix A.  N >= 0.
[in]MB
          MB is INTEGER
          The block size to be used in the blocked QR.  MIN(M,N) >= MB >= 1.
[in,out]A
          A is COMPLEX array, dimension (LDA,N)
          On entry, the M-by-N matrix A.
          On exit, the elements on and below the diagonal of the array
          contain the M-by-MIN(M,N) lower trapezoidal matrix L (L is
          lower triangular if M <= N); the elements above the diagonal
          are the rows of V.
[in]LDA
          LDA is INTEGER
          The leading dimension of the array A.  LDA >= max(1,M).
[out]T
          T is COMPLEX array, dimension (LDT,MIN(M,N))
          The upper triangular block reflectors stored in compact form
          as a sequence of upper triangular blocks.  See below
          for further details.
[in]LDT
          LDT is INTEGER
          The leading dimension of the array T.  LDT >= MB.
[out]WORK
          WORK is COMPLEX array, dimension (MB*N)
[out]INFO
          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
  The matrix V stores the elementary reflectors H(i) in the i-th row
  above the diagonal. For example, if M=5 and N=3, the matrix V is

               V = (  1  v1 v1 v1 v1 )
                   (     1  v2 v2 v2 )
                   (         1 v3 v3 )


  where the vi's represent the vectors which define H(i), which are returned
  in the matrix A.  The 1's along the diagonal of V are not stored in A.
  Let K=MIN(M,N).  The number of blocks is B = ceiling(K/MB), where each
  block is of order MB except for the last block, which is of order
  IB = K - (B-1)*MB.  For each of the B blocks, a upper triangular block
  reflector factor is computed: T1, T2, ..., TB.  The MB-by-MB (and IB-by-IB
  for the last block) T's are stored in the MB-by-K matrix T as

               T = (T1 T2 ... TB).

Definition at line 123 of file cgelqt.f.

124 *
125 * -- LAPACK computational routine --
126 * -- LAPACK is a software package provided by Univ. of Tennessee, --
127 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
128 *
129 * .. Scalar Arguments ..
130  INTEGER INFO, LDA, LDT, M, N, MB
131 * ..
132 * .. Array Arguments ..
133  COMPLEX A( LDA, * ), T( LDT, * ), WORK( * )
134 * ..
135 *
136 * =====================================================================
137 *
138 * ..
139 * .. Local Scalars ..
140  INTEGER I, IB, IINFO, K
141 * ..
142 * .. External Subroutines ..
143  EXTERNAL cgelqt3, clarfb, xerbla
144 * ..
145 * .. Executable Statements ..
146 *
147 * Test the input arguments
148 *
149  info = 0
150  IF( m.LT.0 ) THEN
151  info = -1
152  ELSE IF( n.LT.0 ) THEN
153  info = -2
154  ELSE IF( mb.LT.1 .OR. (mb.GT.min(m,n) .AND. min(m,n).GT.0 ))THEN
155  info = -3
156  ELSE IF( lda.LT.max( 1, m ) ) THEN
157  info = -5
158  ELSE IF( ldt.LT.mb ) THEN
159  info = -7
160  END IF
161  IF( info.NE.0 ) THEN
162  CALL xerbla( 'CGELQT', -info )
163  RETURN
164  END IF
165 *
166 * Quick return if possible
167 *
168  k = min( m, n )
169  IF( k.EQ.0 ) RETURN
170 *
171 * Blocked loop of length K
172 *
173  DO i = 1, k, mb
174  ib = min( k-i+1, mb )
175 *
176 * Compute the LQ factorization of the current block A(I:M,I:I+IB-1)
177 *
178  CALL cgelqt3( ib, n-i+1, a(i,i), lda, t(1,i), ldt, iinfo )
179  IF( i+ib.LE.m ) THEN
180 *
181 * Update by applying H**T to A(I:M,I+IB:N) from the right
182 *
183  CALL clarfb( 'R', 'N', 'F', 'R', m-i-ib+1, n-i+1, ib,
184  $ a( i, i ), lda, t( 1, i ), ldt,
185  $ a( i+ib, i ), lda, work , m-i-ib+1 )
186  END IF
187  END DO
188  RETURN
189 *
190 * End of CGELQT
191 *
subroutine xerbla(SRNAME, INFO)
XERBLA
Definition: xerbla.f:60
subroutine clarfb(SIDE, TRANS, DIRECT, STOREV, M, N, K, V, LDV, T, LDT, C, LDC, WORK, LDWORK)
CLARFB applies a block reflector or its conjugate-transpose to a general rectangular matrix.
Definition: clarfb.f:197
recursive subroutine cgelqt3(M, N, A, LDA, T, LDT, INFO)
CGELQT3
Definition: cgelqt3.f:116
Here is the call graph for this function:
Here is the caller graph for this function: