LAPACK 3.11.0 LAPACK: Linear Algebra PACKage
Searching...
No Matches

## ◆ zsysv_rk()

 subroutine zsysv_rk ( character UPLO, integer N, integer NRHS, complex*16, dimension( lda, * ) A, integer LDA, complex*16, dimension( * ) E, integer, dimension( * ) IPIV, complex*16, dimension( ldb, * ) B, integer LDB, complex*16, dimension( * ) WORK, integer LWORK, integer INFO )

ZSYSV_RK computes the solution to system of linear equations A * X = B for SY matrices

Purpose:
``` ZSYSV_RK computes the solution to a complex system of linear
equations A * X = B, where A is an N-by-N symmetric matrix
and X and B are N-by-NRHS matrices.

The bounded Bunch-Kaufman (rook) diagonal pivoting method is used
to factor A as
A = P*U*D*(U**T)*(P**T),  if UPLO = 'U', or
A = P*L*D*(L**T)*(P**T),  if UPLO = 'L',
where U (or L) is unit upper (or lower) triangular matrix,
U**T (or L**T) is the transpose of U (or L), P is a permutation
matrix, P**T is the transpose of P, and D is symmetric and block
diagonal with 1-by-1 and 2-by-2 diagonal blocks.

ZSYTRF_RK is called to compute the factorization of a complex
symmetric matrix.  The factored form of A is then used to solve
the system of equations A * X = B by calling BLAS3 routine ZSYTRS_3.```
Parameters
 [in] UPLO ``` UPLO is CHARACTER*1 Specifies whether the upper or lower triangular part of the symmetric matrix A is stored: = 'U': Upper triangle of A is stored; = 'L': Lower triangle of A is stored.``` [in] N ``` N is INTEGER The number of linear equations, i.e., the order of the matrix A. N >= 0.``` [in] NRHS ``` NRHS is INTEGER The number of right hand sides, i.e., the number of columns of the matrix B. NRHS >= 0.``` [in,out] A ``` A is COMPLEX*16 array, dimension (LDA,N) On entry, the symmetric matrix A. If UPLO = 'U': the leading N-by-N upper triangular part of A contains the upper triangular part of the matrix A, and the strictly lower triangular part of A is not referenced. If UPLO = 'L': the leading N-by-N lower triangular part of A contains the lower triangular part of the matrix A, and the strictly upper triangular part of A is not referenced. On exit, if INFO = 0, diagonal of the block diagonal matrix D and factors U or L as computed by ZSYTRF_RK: a) ONLY diagonal elements of the symmetric block diagonal matrix D on the diagonal of A, i.e. D(k,k) = A(k,k); (superdiagonal (or subdiagonal) elements of D are stored on exit in array E), and b) If UPLO = 'U': factor U in the superdiagonal part of A. If UPLO = 'L': factor L in the subdiagonal part of A. For more info see the description of ZSYTRF_RK routine.``` [in] LDA ``` LDA is INTEGER The leading dimension of the array A. LDA >= max(1,N).``` [out] E ``` E is COMPLEX*16 array, dimension (N) On exit, contains the output computed by the factorization routine ZSYTRF_RK, i.e. the superdiagonal (or subdiagonal) elements of the symmetric block diagonal matrix D with 1-by-1 or 2-by-2 diagonal blocks, where If UPLO = 'U': E(i) = D(i-1,i), i=2:N, E(1) is set to 0; If UPLO = 'L': E(i) = D(i+1,i), i=1:N-1, E(N) is set to 0. NOTE: For 1-by-1 diagonal block D(k), where 1 <= k <= N, the element E(k) is set to 0 in both UPLO = 'U' or UPLO = 'L' cases. For more info see the description of ZSYTRF_RK routine.``` [out] IPIV ``` IPIV is INTEGER array, dimension (N) Details of the interchanges and the block structure of D, as determined by ZSYTRF_RK. For more info see the description of ZSYTRF_RK routine.``` [in,out] B ``` B is COMPLEX*16 array, dimension (LDB,NRHS) On entry, the N-by-NRHS right hand side matrix B. On exit, if INFO = 0, the N-by-NRHS solution matrix X.``` [in] LDB ``` LDB is INTEGER The leading dimension of the array B. LDB >= max(1,N).``` [out] WORK ``` WORK is COMPLEX*16 array, dimension ( MAX(1,LWORK) ). Work array used in the factorization stage. On exit, if INFO = 0, WORK(1) returns the optimal LWORK.``` [in] LWORK ``` LWORK is INTEGER The length of WORK. LWORK >= 1. For best performance of factorization stage LWORK >= max(1,N*NB), where NB is the optimal blocksize for ZSYTRF_RK. If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array for factorization stage, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA.``` [out] INFO ``` INFO is INTEGER = 0: successful exit < 0: If INFO = -k, the k-th argument had an illegal value > 0: If INFO = k, the matrix A is singular, because: If UPLO = 'U': column k in the upper triangular part of A contains all zeros. If UPLO = 'L': column k in the lower triangular part of A contains all zeros. Therefore D(k,k) is exactly zero, and superdiagonal elements of column k of U (or subdiagonal elements of column k of L ) are all zeros. The factorization has been completed, but the block diagonal matrix D is exactly singular, and division by zero will occur if it is used to solve a system of equations. NOTE: INFO only stores the first occurrence of a singularity, any subsequent occurrence of singularity is not stored in INFO even though the factorization always completes.```
Contributors:
```  December 2016,  Igor Kozachenko,
Computer Science Division,
University of California, Berkeley

September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas,
School of Mathematics,
University of Manchester```

Definition at line 226 of file zsysv_rk.f.

228*
229* -- LAPACK driver routine --
230* -- LAPACK is a software package provided by Univ. of Tennessee, --
231* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
232*
233* .. Scalar Arguments ..
234 CHARACTER UPLO
235 INTEGER INFO, LDA, LDB, LWORK, N, NRHS
236* ..
237* .. Array Arguments ..
238 INTEGER IPIV( * )
239 COMPLEX*16 A( LDA, * ), B( LDB, * ), E( * ), WORK( * )
240* ..
241*
242* =====================================================================
243*
244* .. Local Scalars ..
245 LOGICAL LQUERY
246 INTEGER LWKOPT
247* ..
248* .. External Functions ..
249 LOGICAL LSAME
250 EXTERNAL lsame
251* ..
252* .. External Subroutines ..
253 EXTERNAL xerbla, zsytrf_rk, zsytrs_3
254* ..
255* .. Intrinsic Functions ..
256 INTRINSIC max
257* ..
258* .. Executable Statements ..
259*
260* Test the input parameters.
261*
262 info = 0
263 lquery = ( lwork.EQ.-1 )
264 IF( .NOT.lsame( uplo, 'U' ) .AND. .NOT.lsame( uplo, 'L' ) ) THEN
265 info = -1
266 ELSE IF( n.LT.0 ) THEN
267 info = -2
268 ELSE IF( nrhs.LT.0 ) THEN
269 info = -3
270 ELSE IF( lda.LT.max( 1, n ) ) THEN
271 info = -5
272 ELSE IF( ldb.LT.max( 1, n ) ) THEN
273 info = -9
274 ELSE IF( lwork.LT.1 .AND. .NOT.lquery ) THEN
275 info = -11
276 END IF
277*
278 IF( info.EQ.0 ) THEN
279 IF( n.EQ.0 ) THEN
280 lwkopt = 1
281 ELSE
282 CALL zsytrf_rk( uplo, n, a, lda, e, ipiv, work, -1, info )
283 lwkopt = int( dble( work( 1 ) ) )
284 END IF
285 work( 1 ) = lwkopt
286 END IF
287*
288 IF( info.NE.0 ) THEN
289 CALL xerbla( 'ZSYSV_RK ', -info )
290 RETURN
291 ELSE IF( lquery ) THEN
292 RETURN
293 END IF
294*
295* Compute the factorization A = P*U*D*(U**T)*(P**T) or
296* A = P*U*D*(U**T)*(P**T).
297*
298 CALL zsytrf_rk( uplo, n, a, lda, e, ipiv, work, lwork, info )
299*
300 IF( info.EQ.0 ) THEN
301*
302* Solve the system A*X = B with BLAS3 solver, overwriting B with X.
303*
304 CALL zsytrs_3( uplo, n, nrhs, a, lda, e, ipiv, b, ldb, info )
305*
306 END IF
307*
308 work( 1 ) = lwkopt
309*
310 RETURN
311*
312* End of ZSYSV_RK
313*
subroutine xerbla(SRNAME, INFO)
XERBLA
Definition: xerbla.f:60
logical function lsame(CA, CB)
LSAME
Definition: lsame.f:53
subroutine zsytrs_3(UPLO, N, NRHS, A, LDA, E, IPIV, B, LDB, INFO)
ZSYTRS_3
Definition: zsytrs_3.f:165
subroutine zsytrf_rk(UPLO, N, A, LDA, E, IPIV, WORK, LWORK, INFO)
ZSYTRF_RK computes the factorization of a complex symmetric indefinite matrix using the bounded Bunch...
Definition: zsytrf_rk.f:259
Here is the call graph for this function:
Here is the caller graph for this function: