LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
clanht.f
Go to the documentation of this file.
1*> \brief \b CLANHT returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a complex Hermitian tridiagonal matrix.
2*
3* =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6* http://www.netlib.org/lapack/explore-html/
7*
8*> Download CLANHT + dependencies
9*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/clanht.f">
10*> [TGZ]</a>
11*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/clanht.f">
12*> [ZIP]</a>
13*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/clanht.f">
14*> [TXT]</a>
15*
16* Definition:
17* ===========
18*
19* REAL FUNCTION CLANHT( NORM, N, D, E )
20*
21* .. Scalar Arguments ..
22* CHARACTER NORM
23* INTEGER N
24* ..
25* .. Array Arguments ..
26* REAL D( * )
27* COMPLEX E( * )
28* ..
29*
30*
31*> \par Purpose:
32* =============
33*>
34*> \verbatim
35*>
36*> CLANHT returns the value of the one norm, or the Frobenius norm, or
37*> the infinity norm, or the element of largest absolute value of a
38*> complex Hermitian tridiagonal matrix A.
39*> \endverbatim
40*>
41*> \return CLANHT
42*> \verbatim
43*>
44*> CLANHT = ( max(abs(A(i,j))), NORM = 'M' or 'm'
45*> (
46*> ( norm1(A), NORM = '1', 'O' or 'o'
47*> (
48*> ( normI(A), NORM = 'I' or 'i'
49*> (
50*> ( normF(A), NORM = 'F', 'f', 'E' or 'e'
51*>
52*> where norm1 denotes the one norm of a matrix (maximum column sum),
53*> normI denotes the infinity norm of a matrix (maximum row sum) and
54*> normF denotes the Frobenius norm of a matrix (square root of sum of
55*> squares). Note that max(abs(A(i,j))) is not a consistent matrix norm.
56*> \endverbatim
57*
58* Arguments:
59* ==========
60*
61*> \param[in] NORM
62*> \verbatim
63*> NORM is CHARACTER*1
64*> Specifies the value to be returned in CLANHT as described
65*> above.
66*> \endverbatim
67*>
68*> \param[in] N
69*> \verbatim
70*> N is INTEGER
71*> The order of the matrix A. N >= 0. When N = 0, CLANHT is
72*> set to zero.
73*> \endverbatim
74*>
75*> \param[in] D
76*> \verbatim
77*> D is REAL array, dimension (N)
78*> The diagonal elements of A.
79*> \endverbatim
80*>
81*> \param[in] E
82*> \verbatim
83*> E is COMPLEX array, dimension (N-1)
84*> The (n-1) sub-diagonal or super-diagonal elements of A.
85*> \endverbatim
86*
87* Authors:
88* ========
89*
90*> \author Univ. of Tennessee
91*> \author Univ. of California Berkeley
92*> \author Univ. of Colorado Denver
93*> \author NAG Ltd.
94*
95*> \ingroup lanht
96*
97* =====================================================================
98 REAL function clanht( norm, n, d, e )
99*
100* -- LAPACK auxiliary routine --
101* -- LAPACK is a software package provided by Univ. of Tennessee, --
102* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
103*
104* .. Scalar Arguments ..
105 CHARACTER norm
106 INTEGER n
107* ..
108* .. Array Arguments ..
109 REAL d( * )
110 COMPLEX e( * )
111* ..
112*
113* =====================================================================
114*
115* .. Parameters ..
116 REAL one, zero
117 parameter( one = 1.0e+0, zero = 0.0e+0 )
118* ..
119* .. Local Scalars ..
120 INTEGER i
121 REAL anorm, scale, sum
122* ..
123* .. External Functions ..
124 LOGICAL lsame, sisnan
125 EXTERNAL lsame, sisnan
126* ..
127* .. External Subroutines ..
128 EXTERNAL classq, slassq
129* ..
130* .. Intrinsic Functions ..
131 INTRINSIC abs, sqrt
132* ..
133* .. Executable Statements ..
134*
135 IF( n.LE.0 ) THEN
136 anorm = zero
137 ELSE IF( lsame( norm, 'M' ) ) THEN
138*
139* Find max(abs(A(i,j))).
140*
141 anorm = abs( d( n ) )
142 DO 10 i = 1, n - 1
143 sum = abs( d( i ) )
144 IF( anorm .LT. sum .OR. sisnan( sum ) ) anorm = sum
145 sum = abs( e( i ) )
146 IF( anorm .LT. sum .OR. sisnan( sum ) ) anorm = sum
147 10 CONTINUE
148 ELSE IF( lsame( norm, 'O' ) .OR. norm.EQ.'1' .OR.
149 $ lsame( norm, 'I' ) ) THEN
150*
151* Find norm1(A).
152*
153 IF( n.EQ.1 ) THEN
154 anorm = abs( d( 1 ) )
155 ELSE
156 anorm = abs( d( 1 ) )+abs( e( 1 ) )
157 sum = abs( e( n-1 ) )+abs( d( n ) )
158 IF( anorm .LT. sum .OR. sisnan( sum ) ) anorm = sum
159 DO 20 i = 2, n - 1
160 sum = abs( d( i ) )+abs( e( i ) )+abs( e( i-1 ) )
161 IF( anorm .LT. sum .OR. sisnan( sum ) ) anorm = sum
162 20 CONTINUE
163 END IF
164 ELSE IF( ( lsame( norm, 'F' ) ) .OR.
165 $ ( lsame( norm, 'E' ) ) ) THEN
166*
167* Find normF(A).
168*
169 scale = zero
170 sum = one
171 IF( n.GT.1 ) THEN
172 CALL classq( n-1, e, 1, scale, sum )
173 sum = 2*sum
174 END IF
175 CALL slassq( n, d, 1, scale, sum )
176 anorm = scale*sqrt( sum )
177 END IF
178*
179 clanht = anorm
180 RETURN
181*
182* End of CLANHT
183*
184 END
logical function sisnan(sin)
SISNAN tests input for NaN.
Definition sisnan.f:57
real function clanht(norm, n, d, e)
CLANHT returns the value of the 1-norm, or the Frobenius norm, or the infinity norm,...
Definition clanht.f:99
subroutine slassq(n, x, incx, scale, sumsq)
SLASSQ updates a sum of squares represented in scaled form.
Definition slassq.f90:122
subroutine classq(n, x, incx, scale, sumsq)
CLASSQ updates a sum of squares represented in scaled form.
Definition classq.f90:122
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48