134      SUBROUTINE dgttrs( TRANS, N, NRHS, DL, D, DU, DU2, IPIV, B,
 
  144      INTEGER            INFO, LDB, N, NRHS
 
  148      DOUBLE PRECISION   B( LDB, * ), D( * ), DL( * ), DU( * ), DU2( * )
 
  155      INTEGER            ITRANS, J, JB, NB
 
  170      notran = ( trans.EQ.
'N' .OR. trans.EQ.
'n' )
 
  171      IF( .NOT.notran .AND. .NOT.( trans.EQ.
'T' .OR. trans.EQ.
 
  172     $    
't' ) .AND. .NOT.( trans.EQ.
'C' .OR. trans.EQ.
'c' ) ) 
THEN 
  174      ELSE IF( n.LT.0 ) 
THEN 
  176      ELSE IF( nrhs.LT.0 ) 
THEN 
  178      ELSE IF( ldb.LT.max( n, 1 ) ) 
THEN 
  182         CALL xerbla( 
'DGTTRS', -info )
 
  188      IF( n.EQ.0 .OR. nrhs.EQ.0 )
 
  204         nb = max( 1, ilaenv( 1, 
'DGTTRS', trans, n, nrhs, -1, -1 ) )
 
  207      IF( nb.GE.nrhs ) 
THEN 
  208         CALL dgtts2( itrans, n, nrhs, dl, d, du, du2, ipiv, b, ldb )
 
  210         DO 10 j = 1, nrhs, nb
 
  211            jb = min( nrhs-j+1, nb )
 
  212            CALL dgtts2( itrans, n, jb, dl, d, du, du2, ipiv, b( 1,
 
 
subroutine dgttrs(trans, n, nrhs, dl, d, du, du2, ipiv, b, ldb, info)
DGTTRS
subroutine dgtts2(itrans, n, nrhs, dl, d, du, du2, ipiv, b, ldb)
DGTTS2 solves a system of linear equations with a tridiagonal matrix using the LU factorization compu...