LAPACK  3.10.1 LAPACK: Linear Algebra PACKage
cgeqrt3.f
Go to the documentation of this file.
1 *> \brief <b> CGEQRT3 recursively computes a QR factorization of a general real or complex matrix using the compact WY representation of Q. </b>
2 *
3 * =========== DOCUMENTATION ===========
4 *
5 * Online html documentation available at
6 * http://www.netlib.org/lapack/explore-html/
7 *
8 *> \htmlonly
10 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgeqrt3.f">
11 *> [TGZ]</a>
12 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgeqrt3.f">
13 *> [ZIP]</a>
14 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgeqrt3.f">
15 *> [TXT]</a>
16 *> \endhtmlonly
17 *
18 * Definition:
19 * ===========
20 *
21 * RECURSIVE SUBROUTINE CGEQRT3( M, N, A, LDA, T, LDT, INFO )
22 *
23 * .. Scalar Arguments ..
24 * INTEGER INFO, LDA, M, N, LDT
25 * ..
26 * .. Array Arguments ..
27 * COMPLEX A( LDA, * ), T( LDT, * )
28 * ..
29 *
30 *
31 *> \par Purpose:
32 * =============
33 *>
34 *> \verbatim
35 *>
36 *> CGEQRT3 recursively computes a QR factorization of a complex M-by-N matrix A,
37 *> using the compact WY representation of Q.
38 *>
39 *> Based on the algorithm of Elmroth and Gustavson,
40 *> IBM J. Res. Develop. Vol 44 No. 4 July 2000.
41 *> \endverbatim
42 *
43 * Arguments:
44 * ==========
45 *
46 *> \param[in] M
47 *> \verbatim
48 *> M is INTEGER
49 *> The number of rows of the matrix A. M >= N.
50 *> \endverbatim
51 *>
52 *> \param[in] N
53 *> \verbatim
54 *> N is INTEGER
55 *> The number of columns of the matrix A. N >= 0.
56 *> \endverbatim
57 *>
58 *> \param[in,out] A
59 *> \verbatim
60 *> A is COMPLEX array, dimension (LDA,N)
61 *> On entry, the complex M-by-N matrix A. On exit, the elements on and
62 *> above the diagonal contain the N-by-N upper triangular matrix R; the
63 *> elements below the diagonal are the columns of V. See below for
64 *> further details.
65 *> \endverbatim
66 *>
67 *> \param[in] LDA
68 *> \verbatim
69 *> LDA is INTEGER
70 *> The leading dimension of the array A. LDA >= max(1,M).
71 *> \endverbatim
72 *>
73 *> \param[out] T
74 *> \verbatim
75 *> T is COMPLEX array, dimension (LDT,N)
76 *> The N-by-N upper triangular factor of the block reflector.
77 *> The elements on and above the diagonal contain the block
78 *> reflector T; the elements below the diagonal are not used.
79 *> See below for further details.
80 *> \endverbatim
81 *>
82 *> \param[in] LDT
83 *> \verbatim
84 *> LDT is INTEGER
85 *> The leading dimension of the array T. LDT >= max(1,N).
86 *> \endverbatim
87 *>
88 *> \param[out] INFO
89 *> \verbatim
90 *> INFO is INTEGER
91 *> = 0: successful exit
92 *> < 0: if INFO = -i, the i-th argument had an illegal value
93 *> \endverbatim
94 *
95 * Authors:
96 * ========
97 *
98 *> \author Univ. of Tennessee
99 *> \author Univ. of California Berkeley
100 *> \author Univ. of Colorado Denver
101 *> \author NAG Ltd.
102 *
103 *> \ingroup complexGEcomputational
104 *
105 *> \par Further Details:
106 * =====================
107 *>
108 *> \verbatim
109 *>
110 *> The matrix V stores the elementary reflectors H(i) in the i-th column
111 *> below the diagonal. For example, if M=5 and N=3, the matrix V is
112 *>
113 *> V = ( 1 )
114 *> ( v1 1 )
115 *> ( v1 v2 1 )
116 *> ( v1 v2 v3 )
117 *> ( v1 v2 v3 )
118 *>
119 *> where the vi's represent the vectors which define H(i), which are returned
120 *> in the matrix A. The 1's along the diagonal of V are not stored in A. The
121 *> block reflector H is then given by
122 *>
123 *> H = I - V * T * V**H
124 *>
125 *> where V**H is the conjugate transpose of V.
126 *>
127 *> For details of the algorithm, see Elmroth and Gustavson (cited above).
128 *> \endverbatim
129 *>
130 * =====================================================================
131  RECURSIVE SUBROUTINE cgeqrt3( M, N, A, LDA, T, LDT, INFO )
132 *
133 * -- LAPACK computational routine --
134 * -- LAPACK is a software package provided by Univ. of Tennessee, --
135 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
136 *
137 * .. Scalar Arguments ..
138  INTEGER info, lda, m, n, ldt
139 * ..
140 * .. Array Arguments ..
141  COMPLEX a( lda, * ), t( ldt, * )
142 * ..
143 *
144 * =====================================================================
145 *
146 * .. Parameters ..
147  COMPLEX one
148  parameter( one = (1.0,0.0) )
149 * ..
150 * .. Local Scalars ..
151  INTEGER i, i1, j, j1, n1, n2, iinfo
152 * ..
153 * .. External Subroutines ..
154  EXTERNAL clarfg, ctrmm, cgemm, xerbla
155 * ..
156 * .. Executable Statements ..
157 *
158  info = 0
159  IF( n .LT. 0 ) THEN
160  info = -2
161  ELSE IF( m .LT. n ) THEN
162  info = -1
163  ELSE IF( lda .LT. max( 1, m ) ) THEN
164  info = -4
165  ELSE IF( ldt .LT. max( 1, n ) ) THEN
166  info = -6
167  END IF
168  IF( info.NE.0 ) THEN
169  CALL xerbla( 'CGEQRT3', -info )
170  RETURN
171  END IF
172 *
173  IF( n.EQ.1 ) THEN
174 *
175 * Compute Householder transform when N=1
176 *
177  CALL clarfg( m, a(1,1), a( min( 2, m ), 1 ), 1, t(1,1) )
178 *
179  ELSE
180 *
181 * Otherwise, split A into blocks...
182 *
183  n1 = n/2
184  n2 = n-n1
185  j1 = min( n1+1, n )
186  i1 = min( n+1, m )
187 *
188 * Compute A(1:M,1:N1) <- (Y1,R1,T1), where Q1 = I - Y1 T1 Y1**H
189 *
190  CALL cgeqrt3( m, n1, a, lda, t, ldt, iinfo )
191 *
192 * Compute A(1:M,J1:N) = Q1**H A(1:M,J1:N) [workspace: T(1:N1,J1:N)]
193 *
194  DO j=1,n2
195  DO i=1,n1
196  t( i, j+n1 ) = a( i, j+n1 )
197  END DO
198  END DO
199  CALL ctrmm( 'L', 'L', 'C', 'U', n1, n2, one,
200  & a, lda, t( 1, j1 ), ldt )
201 *
202  CALL cgemm( 'C', 'N', n1, n2, m-n1, one, a( j1, 1 ), lda,
203  & a( j1, j1 ), lda, one, t( 1, j1 ), ldt)
204 *
205  CALL ctrmm( 'L', 'U', 'C', 'N', n1, n2, one,
206  & t, ldt, t( 1, j1 ), ldt )
207 *
208  CALL cgemm( 'N', 'N', m-n1, n2, n1, -one, a( j1, 1 ), lda,
209  & t( 1, j1 ), ldt, one, a( j1, j1 ), lda )
210 *
211  CALL ctrmm( 'L', 'L', 'N', 'U', n1, n2, one,
212  & a, lda, t( 1, j1 ), ldt )
213 *
214  DO j=1,n2
215  DO i=1,n1
216  a( i, j+n1 ) = a( i, j+n1 ) - t( i, j+n1 )
217  END DO
218  END DO
219 *
220 * Compute A(J1:M,J1:N) <- (Y2,R2,T2) where Q2 = I - Y2 T2 Y2**H
221 *
222  CALL cgeqrt3( m-n1, n2, a( j1, j1 ), lda,
223  & t( j1, j1 ), ldt, iinfo )
224 *
225 * Compute T3 = T(1:N1,J1:N) = -T1 Y1**H Y2 T2
226 *
227  DO i=1,n1
228  DO j=1,n2
229  t( i, j+n1 ) = conjg(a( j+n1, i ))
230  END DO
231  END DO
232 *
233  CALL ctrmm( 'R', 'L', 'N', 'U', n1, n2, one,
234  & a( j1, j1 ), lda, t( 1, j1 ), ldt )
235 *
236  CALL cgemm( 'C', 'N', n1, n2, m-n, one, a( i1, 1 ), lda,
237  & a( i1, j1 ), lda, one, t( 1, j1 ), ldt )
238 *
239  CALL ctrmm( 'L', 'U', 'N', 'N', n1, n2, -one, t, ldt,
240  & t( 1, j1 ), ldt )
241 *
242  CALL ctrmm( 'R', 'U', 'N', 'N', n1, n2, one,
243  & t( j1, j1 ), ldt, t( 1, j1 ), ldt )
244 *
245 * Y = (Y1,Y2); R = [ R1 A(1:N1,J1:N) ]; T = [T1 T3]
246 * [ 0 R2 ] [ 0 T2]
247 *
248  END IF
249 *
250  RETURN
251 *
252 * End of CGEQRT3
253 *
254  END
subroutine xerbla(SRNAME, INFO)
XERBLA
Definition: xerbla.f:60
subroutine cgemm(TRANSA, TRANSB, M, N, K, ALPHA, A, LDA, B, LDB, BETA, C, LDC)
CGEMM
Definition: cgemm.f:187
subroutine ctrmm(SIDE, UPLO, TRANSA, DIAG, M, N, ALPHA, A, LDA, B, LDB)
CTRMM
Definition: ctrmm.f:177
recursive subroutine cgeqrt3(M, N, A, LDA, T, LDT, INFO)
CGEQRT3 recursively computes a QR factorization of a general real or complex matrix using the compact...
Definition: cgeqrt3.f:132
subroutine clarfg(N, ALPHA, X, INCX, TAU)
CLARFG generates an elementary reflector (Householder matrix).
Definition: clarfg.f:106