LAPACK 3.12.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ cdrvhe_aa_2stage()

subroutine cdrvhe_aa_2stage ( logical, dimension( * )  dotype,
integer  nn,
integer, dimension( * )  nval,
integer  nrhs,
real  thresh,
logical  tsterr,
integer  nmax,
complex, dimension( * )  a,
complex, dimension( * )  afac,
complex, dimension( * )  ainv,
complex, dimension( * )  b,
complex, dimension( * )  x,
complex, dimension( * )  xact,
complex, dimension( * )  work,
real, dimension( * )  rwork,
integer, dimension( * )  iwork,
integer  nout 
)

CDRVHE_AA_2STAGE

Purpose:
 CDRVHE_AA_2STAGE tests the driver routine CHESV_AA_2STAGE.
Parameters
[in]DOTYPE
          DOTYPE is LOGICAL array, dimension (NTYPES)
          The matrix types to be used for testing.  Matrices of type j
          (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
          .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
[in]NN
          NN is INTEGER
          The number of values of N contained in the vector NVAL.
[in]NVAL
          NVAL is INTEGER array, dimension (NN)
          The values of the matrix dimension N.
[in]NRHS
          NRHS is INTEGER
          The number of right hand side vectors to be generated for
          each linear system.
[in]THRESH
          THRESH is REAL
          The threshold value for the test ratios.  A result is
          included in the output file if RESULT >= THRESH.  To have
          every test ratio printed, use THRESH = 0.
[in]TSTERR
          TSTERR is LOGICAL
          Flag that indicates whether error exits are to be tested.
[in]NMAX
          NMAX is INTEGER
          The maximum value permitted for N, used in dimensioning the
          work arrays.
[out]A
          A is COMPLEX array, dimension (NMAX*NMAX)
[out]AFAC
          AFAC is COMPLEX array, dimension (NMAX*NMAX)
[out]AINV
          AINV is COMPLEX array, dimension (NMAX*NMAX)
[out]B
          B is COMPLEX array, dimension (NMAX*NRHS)
[out]X
          X is COMPLEX array, dimension (NMAX*NRHS)
[out]XACT
          XACT is COMPLEX array, dimension (NMAX*NRHS)
[out]WORK
          WORK is COMPLEX array, dimension (NMAX*max(2,NRHS))
[out]RWORK
          RWORK is REAL array, dimension (NMAX+2*NRHS)
[out]IWORK
          IWORK is INTEGER array, dimension (NMAX)
[in]NOUT
          NOUT is INTEGER
          The unit number for output.
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 151 of file cdrvhe_aa_2stage.f.

155*
156* -- LAPACK test routine --
157* -- LAPACK is a software package provided by Univ. of Tennessee, --
158* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
159*
160* .. Scalar Arguments ..
161 LOGICAL TSTERR
162 INTEGER NMAX, NN, NOUT, NRHS
163 REAL THRESH
164* ..
165* .. Array Arguments ..
166 LOGICAL DOTYPE( * )
167 INTEGER IWORK( * ), NVAL( * )
168 REAL RWORK( * )
169 COMPLEX A( * ), AFAC( * ), AINV( * ), B( * ),
170 $ WORK( * ), X( * ), XACT( * )
171* ..
172*
173* =====================================================================
174*
175* .. Parameters ..
176 REAL ONE, ZERO
177 parameter( one = 1.0e+0, zero = 0.0e+0 )
178 INTEGER NTYPES, NTESTS
179 parameter( ntypes = 10, ntests = 3 )
180 INTEGER NFACT
181 parameter( nfact = 2 )
182* ..
183* .. Local Scalars ..
184 LOGICAL ZEROT
185 CHARACTER DIST, FACT, TYPE, UPLO, XTYPE
186 CHARACTER*3 MATPATH, PATH
187 INTEGER I, I1, I2, IFACT, IMAT, IN, INFO, IOFF, IUPLO,
188 $ IZERO, J, K, KL, KU, LDA, LWORK, MODE, N,
189 $ NB, NBMIN, NERRS, NFAIL, NIMAT, NRUN, NT
190 REAL ANORM, CNDNUM
191* ..
192* .. Local Arrays ..
193 CHARACTER FACTS( NFACT ), UPLOS( 2 )
194 INTEGER ISEED( 4 ), ISEEDY( 4 )
195 REAL RESULT( NTESTS )
196* ..
197* .. External Functions ..
198 REAL CLANHE, SGET06
199 EXTERNAL clanhe, sget06
200* ..
201* .. External Subroutines ..
202 EXTERNAL aladhd, alaerh, alasvm, xlaenv, cerrvx,
206* ..
207* .. Scalars in Common ..
208 LOGICAL LERR, OK
209 CHARACTER*32 SRNAMT
210 INTEGER INFOT, NUNIT
211* ..
212* .. Common blocks ..
213 COMMON / infoc / infot, nunit, ok, lerr
214 COMMON / srnamc / srnamt
215* ..
216* .. Intrinsic Functions ..
217 INTRINSIC cmplx, max, min
218* ..
219* .. Data statements ..
220 DATA iseedy / 1988, 1989, 1990, 1991 /
221 DATA uplos / 'U', 'L' / , facts / 'F', 'N' /
222* ..
223* .. Executable Statements ..
224*
225* Initialize constants and the random number seed.
226*
227* Test path
228*
229 path( 1: 1 ) = 'Complex precision'
230 path( 2: 3 ) = 'H2'
231*
232* Path to generate matrices
233*
234 matpath( 1: 1 ) = 'Complex precision'
235 matpath( 2: 3 ) = 'HE'
236*
237 nrun = 0
238 nfail = 0
239 nerrs = 0
240 DO 10 i = 1, 4
241 iseed( i ) = iseedy( i )
242 10 CONTINUE
243*
244* Test the error exits
245*
246 IF( tsterr )
247 $ CALL cerrvx( path, nout )
248 infot = 0
249*
250* Set the block size and minimum block size for testing.
251*
252 nb = 1
253 nbmin = 2
254 CALL xlaenv( 1, nb )
255 CALL xlaenv( 2, nbmin )
256*
257* Do for each value of N in NVAL
258*
259 DO 180 in = 1, nn
260 n = nval( in )
261 lda = max( n, 1 )
262 xtype = 'N'
263 nimat = ntypes
264 IF( n.LE.0 )
265 $ nimat = 1
266*
267 DO 170 imat = 1, nimat
268*
269* Do the tests only if DOTYPE( IMAT ) is true.
270*
271 IF( .NOT.dotype( imat ) )
272 $ GO TO 170
273*
274* Skip types 3, 4, 5, or 6 if the matrix size is too small.
275*
276 zerot = imat.GE.3 .AND. imat.LE.6
277 IF( zerot .AND. n.LT.imat-2 )
278 $ GO TO 170
279*
280* Do first for UPLO = 'U', then for UPLO = 'L'
281*
282 DO 160 iuplo = 1, 2
283 uplo = uplos( iuplo )
284*
285* Begin generate the test matrix A.
286*
287* Set up parameters with CLATB4 for the matrix generator
288* based on the type of matrix to be generated.
289*
290 CALL clatb4( matpath, imat, n, n, TYPE, KL, KU, ANORM,
291 $ MODE, CNDNUM, DIST )
292*
293* Generate a matrix with CLATMS.
294*
295 srnamt = 'CLATMS'
296 CALL clatms( n, n, dist, iseed, TYPE, RWORK, MODE,
297 $ CNDNUM, ANORM, KL, KU, UPLO, A, LDA,
298 $ WORK, INFO )
299*
300* Check error code from CLATMS and handle error.
301*
302 IF( info.NE.0 ) THEN
303 CALL alaerh( path, 'CLATMS', info, 0, uplo, n, n,
304 $ -1, -1, -1, imat, nfail, nerrs, nout )
305 GO TO 160
306 END IF
307*
308* For types 3-6, zero one or more rows and columns of
309* the matrix to test that INFO is returned correctly.
310*
311 IF( zerot ) THEN
312 IF( imat.EQ.3 ) THEN
313 izero = 1
314 ELSE IF( imat.EQ.4 ) THEN
315 izero = n
316 ELSE
317 izero = n / 2 + 1
318 END IF
319*
320 IF( imat.LT.6 ) THEN
321*
322* Set row and column IZERO to zero.
323*
324 IF( iuplo.EQ.1 ) THEN
325 ioff = ( izero-1 )*lda
326 DO 20 i = 1, izero - 1
327 a( ioff+i ) = zero
328 20 CONTINUE
329 ioff = ioff + izero
330 DO 30 i = izero, n
331 a( ioff ) = zero
332 ioff = ioff + lda
333 30 CONTINUE
334 ELSE
335 ioff = izero
336 DO 40 i = 1, izero - 1
337 a( ioff ) = zero
338 ioff = ioff + lda
339 40 CONTINUE
340 ioff = ioff - izero
341 DO 50 i = izero, n
342 a( ioff+i ) = zero
343 50 CONTINUE
344 END IF
345 ELSE
346 ioff = 0
347 IF( iuplo.EQ.1 ) THEN
348*
349* Set the first IZERO rows and columns to zero.
350*
351 DO 70 j = 1, n
352 i2 = min( j, izero )
353 DO 60 i = 1, i2
354 a( ioff+i ) = zero
355 60 CONTINUE
356 ioff = ioff + lda
357 70 CONTINUE
358 izero = 1
359 ELSE
360*
361* Set the first IZERO rows and columns to zero.
362*
363 ioff = 0
364 DO 90 j = 1, n
365 i1 = max( j, izero )
366 DO 80 i = i1, n
367 a( ioff+i ) = zero
368 80 CONTINUE
369 ioff = ioff + lda
370 90 CONTINUE
371 END IF
372 END IF
373 ELSE
374 izero = 0
375 END IF
376*
377* End generate the test matrix A.
378*
379*
380 DO 150 ifact = 1, nfact
381*
382* Do first for FACT = 'F', then for other values.
383*
384 fact = facts( ifact )
385*
386* Form an exact solution and set the right hand side.
387*
388 srnamt = 'CLARHS'
389 CALL clarhs( matpath, xtype, uplo, ' ', n, n, kl, ku,
390 $ nrhs, a, lda, xact, lda, b, lda, iseed,
391 $ info )
392 xtype = 'C'
393*
394* --- Test CHESV_AA_2STAGE ---
395*
396 IF( ifact.EQ.2 ) THEN
397 CALL clacpy( uplo, n, n, a, lda, afac, lda )
398 CALL clacpy( 'Full', n, nrhs, b, lda, x, lda )
399*
400* Factor the matrix and solve the system using CHESV_AA.
401*
402 srnamt = 'CHESV_AA_2STAGE '
403 lwork = min(n*nb, 3*nmax*nmax)
404 CALL chesv_aa_2stage( uplo, n, nrhs, afac, lda,
405 $ ainv, (3*nb+1)*n,
406 $ iwork, iwork( 1+n ),
407 $ x, lda, work, lwork, info )
408*
409* Adjust the expected value of INFO to account for
410* pivoting.
411*
412 IF( izero.GT.0 ) THEN
413 j = 1
414 k = izero
415 100 CONTINUE
416 IF( j.EQ.k ) THEN
417 k = iwork( j )
418 ELSE IF( iwork( j ).EQ.k ) THEN
419 k = j
420 END IF
421 IF( j.LT.k ) THEN
422 j = j + 1
423 GO TO 100
424 END IF
425 ELSE
426 k = 0
427 END IF
428*
429* Check error code from CHESV_AA .
430*
431 IF( info.NE.k ) THEN
432 CALL alaerh( path, 'CHESV_AA', info, k,
433 $ uplo, n, n, -1, -1, nrhs,
434 $ imat, nfail, nerrs, nout )
435 GO TO 120
436 ELSE IF( info.NE.0 ) THEN
437 GO TO 120
438 END IF
439*
440* Compute residual of the computed solution.
441*
442 CALL clacpy( 'Full', n, nrhs, b, lda, work, lda )
443 CALL cpot02( uplo, n, nrhs, a, lda, x, lda, work,
444 $ lda, rwork, result( 1 ) )
445*
446* Reconstruct matrix from factors and compute
447* residual.
448*
449c CALL CHET01_AA( UPLO, N, A, LDA, AFAC, LDA,
450c $ IWORK, AINV, LDA, RWORK,
451c $ RESULT( 2 ) )
452c NT = 2
453 nt = 1
454*
455* Print information about the tests that did not pass
456* the threshold.
457*
458 DO 110 k = 1, nt
459 IF( result( k ).GE.thresh ) THEN
460 IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
461 $ CALL aladhd( nout, path )
462 WRITE( nout, fmt = 9999 )'CHESV_AA ',
463 $ uplo, n, imat, k, result( k )
464 nfail = nfail + 1
465 END IF
466 110 CONTINUE
467 nrun = nrun + nt
468 120 CONTINUE
469 END IF
470*
471 150 CONTINUE
472*
473 160 CONTINUE
474 170 CONTINUE
475 180 CONTINUE
476*
477* Print a summary of the results.
478*
479 CALL alasvm( path, nout, nfail, nrun, nerrs )
480*
481 9999 FORMAT( 1x, a, ', UPLO=''', a1, ''', N =', i5, ', type ', i2,
482 $ ', test ', i2, ', ratio =', g12.5 )
483 RETURN
484*
485* End of CDRVHE_AA_2STAGE
486*
subroutine alasvm(type, nout, nfail, nrun, nerrs)
ALASVM
Definition alasvm.f:73
subroutine clarhs(path, xtype, uplo, trans, m, n, kl, ku, nrhs, a, lda, x, ldx, b, ldb, iseed, info)
CLARHS
Definition clarhs.f:208
subroutine xlaenv(ispec, nvalue)
XLAENV
Definition xlaenv.f:81
subroutine aladhd(iounit, path)
ALADHD
Definition aladhd.f:90
subroutine alaerh(path, subnam, info, infoe, opts, m, n, kl, ku, n5, imat, nfail, nerrs, nout)
ALAERH
Definition alaerh.f:147
subroutine cerrvx(path, nunit)
CERRVX
Definition cerrvx.f:55
subroutine cget04(n, nrhs, x, ldx, xact, ldxact, rcond, resid)
CGET04
Definition cget04.f:102
subroutine clatb4(path, imat, m, n, type, kl, ku, anorm, mode, cndnum, dist)
CLATB4
Definition clatb4.f:121
subroutine clatms(m, n, dist, iseed, sym, d, mode, cond, dmax, kl, ku, pack, a, lda, work, info)
CLATMS
Definition clatms.f:332
subroutine cpot02(uplo, n, nrhs, a, lda, x, ldx, b, ldb, rwork, resid)
CPOT02
Definition cpot02.f:127
subroutine chesv_aa_2stage(uplo, n, nrhs, a, lda, tb, ltb, ipiv, ipiv2, b, ldb, work, lwork, info)
CHESV_AA_2STAGE computes the solution to system of linear equations A * X = B for HE matrices
subroutine chetrf_aa_2stage(uplo, n, a, lda, tb, ltb, ipiv, ipiv2, work, lwork, info)
CHETRF_AA_2STAGE
subroutine clacpy(uplo, m, n, a, lda, b, ldb)
CLACPY copies all or part of one two-dimensional array to another.
Definition clacpy.f:103
real function clanhe(norm, uplo, n, a, lda, work)
CLANHE returns the value of the 1-norm, or the Frobenius norm, or the infinity norm,...
Definition clanhe.f:124
real function sget06(rcond, rcondc)
SGET06
Definition sget06.f:55
Here is the call graph for this function:
Here is the caller graph for this function: