LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ cgebrd()

subroutine cgebrd ( integer m,
integer n,
complex, dimension( lda, * ) a,
integer lda,
real, dimension( * ) d,
real, dimension( * ) e,
complex, dimension( * ) tauq,
complex, dimension( * ) taup,
complex, dimension( * ) work,
integer lwork,
integer info )

CGEBRD

Download CGEBRD + dependencies [TGZ] [ZIP] [TXT]

Purpose:
!>
!> CGEBRD reduces a general complex M-by-N matrix A to upper or lower
!> bidiagonal form B by a unitary transformation: Q**H * A * P = B.
!>
!> If m >= n, B is upper bidiagonal; if m < n, B is lower bidiagonal.
!> 
Parameters
[in]M
!>          M is INTEGER
!>          The number of rows in the matrix A.  M >= 0.
!> 
[in]N
!>          N is INTEGER
!>          The number of columns in the matrix A.  N >= 0.
!> 
[in,out]A
!>          A is COMPLEX array, dimension (LDA,N)
!>          On entry, the M-by-N general matrix to be reduced.
!>          On exit,
!>          if m >= n, the diagonal and the first superdiagonal are
!>            overwritten with the upper bidiagonal matrix B; the
!>            elements below the diagonal, with the array TAUQ, represent
!>            the unitary matrix Q as a product of elementary
!>            reflectors, and the elements above the first superdiagonal,
!>            with the array TAUP, represent the unitary matrix P as
!>            a product of elementary reflectors;
!>          if m < n, the diagonal and the first subdiagonal are
!>            overwritten with the lower bidiagonal matrix B; the
!>            elements below the first subdiagonal, with the array TAUQ,
!>            represent the unitary matrix Q as a product of
!>            elementary reflectors, and the elements above the diagonal,
!>            with the array TAUP, represent the unitary matrix P as
!>            a product of elementary reflectors.
!>          See Further Details.
!> 
[in]LDA
!>          LDA is INTEGER
!>          The leading dimension of the array A.  LDA >= max(1,M).
!> 
[out]D
!>          D is REAL array, dimension (min(M,N))
!>          The diagonal elements of the bidiagonal matrix B:
!>          D(i) = A(i,i).
!> 
[out]E
!>          E is REAL array, dimension (min(M,N)-1)
!>          The off-diagonal elements of the bidiagonal matrix B:
!>          if m >= n, E(i) = A(i,i+1) for i = 1,2,...,n-1;
!>          if m < n, E(i) = A(i+1,i) for i = 1,2,...,m-1.
!> 
[out]TAUQ
!>          TAUQ is COMPLEX array, dimension (min(M,N))
!>          The scalar factors of the elementary reflectors which
!>          represent the unitary matrix Q. See Further Details.
!> 
[out]TAUP
!>          TAUP is COMPLEX array, dimension (min(M,N))
!>          The scalar factors of the elementary reflectors which
!>          represent the unitary matrix P. See Further Details.
!> 
[out]WORK
!>          WORK is COMPLEX array, dimension (MAX(1,LWORK))
!>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
!> 
[in]LWORK
!>          LWORK is INTEGER
!>          The length of the array WORK.
!>          LWORK >= 1, if MIN(M,N) = 0, and LWORK >= MAX(M,N), otherwise.
!>          For optimum performance LWORK >= (M+N)*NB, where NB
!>          is the optimal blocksize.
!>
!>          If LWORK = -1, then a workspace query is assumed; the routine
!>          only calculates the optimal size of the WORK array, returns
!>          this value as the first entry of the WORK array, and no error
!>          message related to LWORK is issued by XERBLA.
!> 
[out]INFO
!>          INFO is INTEGER
!>          = 0:  successful exit.
!>          < 0:  if INFO = -i, the i-th argument had an illegal value.
!> 
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
!>
!>  The matrices Q and P are represented as products of elementary
!>  reflectors:
!>
!>  If m >= n,
!>
!>     Q = H(1) H(2) . . . H(n)  and  P = G(1) G(2) . . . G(n-1)
!>
!>  Each H(i) and G(i) has the form:
!>
!>     H(i) = I - tauq * v * v**H  and G(i) = I - taup * u * u**H
!>
!>  where tauq and taup are complex scalars, and v and u are complex
!>  vectors; v(1:i-1) = 0, v(i) = 1, and v(i+1:m) is stored on exit in
!>  A(i+1:m,i); u(1:i) = 0, u(i+1) = 1, and u(i+2:n) is stored on exit in
!>  A(i,i+2:n); tauq is stored in TAUQ(i) and taup in TAUP(i).
!>
!>  If m < n,
!>
!>     Q = H(1) H(2) . . . H(m-1)  and  P = G(1) G(2) . . . G(m)
!>
!>  Each H(i) and G(i) has the form:
!>
!>     H(i) = I - tauq * v * v**H  and G(i) = I - taup * u * u**H
!>
!>  where tauq and taup are complex scalars, and v and u are complex
!>  vectors; v(1:i) = 0, v(i+1) = 1, and v(i+2:m) is stored on exit in
!>  A(i+2:m,i); u(1:i-1) = 0, u(i) = 1, and u(i+1:n) is stored on exit in
!>  A(i,i+1:n); tauq is stored in TAUQ(i) and taup in TAUP(i).
!>
!>  The contents of A on exit are illustrated by the following examples:
!>
!>  m = 6 and n = 5 (m > n):          m = 5 and n = 6 (m < n):
!>
!>    (  d   e   u1  u1  u1 )           (  d   u1  u1  u1  u1  u1 )
!>    (  v1  d   e   u2  u2 )           (  e   d   u2  u2  u2  u2 )
!>    (  v1  v2  d   e   u3 )           (  v1  e   d   u3  u3  u3 )
!>    (  v1  v2  v3  d   e  )           (  v1  v2  e   d   u4  u4 )
!>    (  v1  v2  v3  v4  d  )           (  v1  v2  v3  e   d   u5 )
!>    (  v1  v2  v3  v4  v5 )
!>
!>  where d and e denote diagonal and off-diagonal elements of B, vi
!>  denotes an element of the vector defining H(i), and ui an element of
!>  the vector defining G(i).
!> 

Definition at line 203 of file cgebrd.f.

205*
206* -- LAPACK computational routine --
207* -- LAPACK is a software package provided by Univ. of Tennessee, --
208* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
209*
210* .. Scalar Arguments ..
211 INTEGER INFO, LDA, LWORK, M, N
212* ..
213* .. Array Arguments ..
214 REAL D( * ), E( * )
215 COMPLEX A( LDA, * ), TAUP( * ), TAUQ( * ),
216 $ WORK( * )
217* ..
218*
219* =====================================================================
220*
221* .. Parameters ..
222 COMPLEX ONE
223 parameter( one = ( 1.0e+0, 0.0e+0 ) )
224* ..
225* .. Local Scalars ..
226 LOGICAL LQUERY
227 INTEGER I, IINFO, J, LDWRKX, LDWRKY, LWKMIN, LWKOPT,
228 $ MINMN, NB, NBMIN, NX, WS
229* ..
230* .. External Subroutines ..
231 EXTERNAL cgebd2, cgemm, clabrd, xerbla
232* ..
233* .. Intrinsic Functions ..
234 INTRINSIC max, min, real
235* ..
236* .. External Functions ..
237 INTEGER ILAENV
238 REAL SROUNDUP_LWORK
239 EXTERNAL ilaenv, sroundup_lwork
240* ..
241* .. Executable Statements ..
242*
243* Test the input parameters
244*
245 info = 0
246 minmn = min( m, n )
247 IF( minmn.EQ.0 ) THEN
248 lwkmin = 1
249 lwkopt = 1
250 ELSE
251 lwkmin = max( m, n )
252 nb = max( 1, ilaenv( 1, 'CGEBRD', ' ', m, n, -1, -1 ) )
253 lwkopt = ( m+n )*nb
254 END IF
255 work( 1 ) = sroundup_lwork( lwkopt )
256 lquery = ( lwork.EQ.-1 )
257 IF( m.LT.0 ) THEN
258 info = -1
259 ELSE IF( n.LT.0 ) THEN
260 info = -2
261 ELSE IF( lda.LT.max( 1, m ) ) THEN
262 info = -4
263 ELSE IF( lwork.LT.lwkmin .AND. .NOT.lquery ) THEN
264 info = -10
265 END IF
266 IF( info.LT.0 ) THEN
267 CALL xerbla( 'CGEBRD', -info )
268 RETURN
269 ELSE IF( lquery ) THEN
270 RETURN
271 END IF
272*
273* Quick return if possible
274*
275 IF( minmn.EQ.0 ) THEN
276 work( 1 ) = 1
277 RETURN
278 END IF
279*
280 ws = max( m, n )
281 ldwrkx = m
282 ldwrky = n
283*
284 IF( nb.GT.1 .AND. nb.LT.minmn ) THEN
285*
286* Set the crossover point NX.
287*
288 nx = max( nb, ilaenv( 3, 'CGEBRD', ' ', m, n, -1, -1 ) )
289*
290* Determine when to switch from blocked to unblocked code.
291*
292 IF( nx.LT.minmn ) THEN
293 ws = lwkopt
294 IF( lwork.LT.ws ) THEN
295*
296* Not enough work space for the optimal NB, consider using
297* a smaller block size.
298*
299 nbmin = ilaenv( 2, 'CGEBRD', ' ', m, n, -1, -1 )
300 IF( lwork.GE.( m+n )*nbmin ) THEN
301 nb = lwork / ( m+n )
302 ELSE
303 nb = 1
304 nx = minmn
305 END IF
306 END IF
307 END IF
308 ELSE
309 nx = minmn
310 END IF
311*
312 DO 30 i = 1, minmn - nx, nb
313*
314* Reduce rows and columns i:i+ib-1 to bidiagonal form and return
315* the matrices X and Y which are needed to update the unreduced
316* part of the matrix
317*
318 CALL clabrd( m-i+1, n-i+1, nb, a( i, i ), lda, d( i ),
319 $ e( i ),
320 $ tauq( i ), taup( i ), work, ldwrkx,
321 $ work( ldwrkx*nb+1 ), ldwrky )
322*
323* Update the trailing submatrix A(i+ib:m,i+ib:n), using
324* an update of the form A := A - V*Y**H - X*U**H
325*
326 CALL cgemm( 'No transpose', 'Conjugate transpose', m-i-nb+1,
327 $ n-i-nb+1, nb, -one, a( i+nb, i ), lda,
328 $ work( ldwrkx*nb+nb+1 ), ldwrky, one,
329 $ a( i+nb, i+nb ), lda )
330 CALL cgemm( 'No transpose', 'No transpose', m-i-nb+1,
331 $ n-i-nb+1,
332 $ nb, -one, work( nb+1 ), ldwrkx, a( i, i+nb ), lda,
333 $ one, a( i+nb, i+nb ), lda )
334*
335* Copy diagonal and off-diagonal elements of B back into A
336*
337 IF( m.GE.n ) THEN
338 DO 10 j = i, i + nb - 1
339 a( j, j ) = d( j )
340 a( j, j+1 ) = e( j )
341 10 CONTINUE
342 ELSE
343 DO 20 j = i, i + nb - 1
344 a( j, j ) = d( j )
345 a( j+1, j ) = e( j )
346 20 CONTINUE
347 END IF
348 30 CONTINUE
349*
350* Use unblocked code to reduce the remainder of the matrix
351*
352 CALL cgebd2( m-i+1, n-i+1, a( i, i ), lda, d( i ), e( i ),
353 $ tauq( i ), taup( i ), work, iinfo )
354 work( 1 ) = sroundup_lwork( ws )
355 RETURN
356*
357* End of CGEBRD
358*
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine cgebd2(m, n, a, lda, d, e, tauq, taup, work, info)
CGEBD2 reduces a general matrix to bidiagonal form using an unblocked algorithm.
Definition cgebd2.f:188
subroutine cgemm(transa, transb, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc)
CGEMM
Definition cgemm.f:188
integer function ilaenv(ispec, name, opts, n1, n2, n3, n4)
ILAENV
Definition ilaenv.f:160
subroutine clabrd(m, n, nb, a, lda, d, e, tauq, taup, x, ldx, y, ldy)
CLABRD reduces the first nb rows and columns of a general matrix to a bidiagonal form.
Definition clabrd.f:211
real function sroundup_lwork(lwork)
SROUNDUP_LWORK
Here is the call graph for this function:
Here is the caller graph for this function: