 LAPACK  3.8.0 LAPACK: Linear Algebra PACKage

## ◆ dchktz()

 subroutine dchktz ( logical, dimension( * ) DOTYPE, integer NM, integer, dimension( * ) MVAL, integer NN, integer, dimension( * ) NVAL, double precision THRESH, logical TSTERR, double precision, dimension( * ) A, double precision, dimension( * ) COPYA, double precision, dimension( * ) S, double precision, dimension( * ) TAU, double precision, dimension( * ) WORK, integer NOUT )

DCHKTZ

Purpose:
` DCHKTZ tests DTZRZF.`
Parameters
 [in] DOTYPE ``` DOTYPE is LOGICAL array, dimension (NTYPES) The matrix types to be used for testing. Matrices of type j (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) = .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.``` [in] NM ``` NM is INTEGER The number of values of M contained in the vector MVAL.``` [in] MVAL ``` MVAL is INTEGER array, dimension (NM) The values of the matrix row dimension M.``` [in] NN ``` NN is INTEGER The number of values of N contained in the vector NVAL.``` [in] NVAL ``` NVAL is INTEGER array, dimension (NN) The values of the matrix column dimension N.``` [in] THRESH ``` THRESH is DOUBLE PRECISION The threshold value for the test ratios. A result is included in the output file if RESULT >= THRESH. To have every test ratio printed, use THRESH = 0.``` [in] TSTERR ``` TSTERR is LOGICAL Flag that indicates whether error exits are to be tested.``` [out] A ``` A is DOUBLE PRECISION array, dimension (MMAX*NMAX) where MMAX is the maximum value of M in MVAL and NMAX is the maximum value of N in NVAL.``` [out] COPYA ` COPYA is DOUBLE PRECISION array, dimension (MMAX*NMAX)` [out] S ``` S is DOUBLE PRECISION array, dimension (min(MMAX,NMAX))``` [out] TAU ` TAU is DOUBLE PRECISION array, dimension (MMAX)` [out] WORK ``` WORK is DOUBLE PRECISION array, dimension (MMAX*NMAX + 4*NMAX + MMAX)``` [in] NOUT ``` NOUT is INTEGER The unit number for output.```
Date
December 2016

Definition at line 134 of file dchktz.f.

134 *
135 * -- LAPACK test routine (version 3.7.0) --
136 * -- LAPACK is a software package provided by Univ. of Tennessee, --
137 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
138 * December 2016
139 *
140 * .. Scalar Arguments ..
141  LOGICAL tsterr
142  INTEGER nm, nn, nout
143  DOUBLE PRECISION thresh
144 * ..
145 * .. Array Arguments ..
146  LOGICAL dotype( * )
147  INTEGER mval( * ), nval( * )
148  DOUBLE PRECISION a( * ), copya( * ), s( * ),
149  \$ tau( * ), work( * )
150 * ..
151 *
152 * =====================================================================
153 *
154 * .. Parameters ..
155  INTEGER ntypes
156  parameter( ntypes = 3 )
157  INTEGER ntests
158  parameter( ntests = 3 )
159  DOUBLE PRECISION one, zero
160  parameter( one = 1.0d0, zero = 0.0d0 )
161 * ..
162 * .. Local Scalars ..
163  CHARACTER*3 path
164  INTEGER i, im, imode, in, info, k, lda, lwork, m,
165  \$ mnmin, mode, n, nerrs, nfail, nrun
166  DOUBLE PRECISION eps
167 * ..
168 * .. Local Arrays ..
169  INTEGER iseed( 4 ), iseedy( 4 )
170  DOUBLE PRECISION result( ntests )
171 * ..
172 * .. External Functions ..
173  DOUBLE PRECISION dlamch, dqrt12, drzt01, drzt02
174  EXTERNAL dlamch, dqrt12, drzt01, drzt02
175 * ..
176 * .. External Subroutines ..
177  EXTERNAL alahd, alasum, derrtz, dgeqr2, dlacpy, dlaord,
178  \$ dlaset, dlatms, dtzrzf
179 * ..
180 * .. Intrinsic Functions ..
181  INTRINSIC max, min
182 * ..
183 * .. Scalars in Common ..
184  LOGICAL lerr, ok
185  CHARACTER*32 srnamt
186  INTEGER infot, iounit
187 * ..
188 * .. Common blocks ..
189  COMMON / infoc / infot, iounit, ok, lerr
190  COMMON / srnamc / srnamt
191 * ..
192 * .. Data statements ..
193  DATA iseedy / 1988, 1989, 1990, 1991 /
194 * ..
195 * .. Executable Statements ..
196 *
197 * Initialize constants and the random number seed.
198 *
199  path( 1: 1 ) = 'Double precision'
200  path( 2: 3 ) = 'TZ'
201  nrun = 0
202  nfail = 0
203  nerrs = 0
204  DO 10 i = 1, 4
205  iseed( i ) = iseedy( i )
206  10 CONTINUE
207  eps = dlamch( 'Epsilon' )
208 *
209 * Test the error exits
210 *
211  IF( tsterr )
212  \$ CALL derrtz( path, nout )
213  infot = 0
214 *
215  DO 70 im = 1, nm
216 *
217 * Do for each value of M in MVAL.
218 *
219  m = mval( im )
220  lda = max( 1, m )
221 *
222  DO 60 in = 1, nn
223 *
224 * Do for each value of N in NVAL for which M .LE. N.
225 *
226  n = nval( in )
227  mnmin = min( m, n )
228  lwork = max( 1, n*n+4*m+n, m*n+2*mnmin+4*n )
229 *
230  IF( m.LE.n ) THEN
231  DO 50 imode = 1, ntypes
232  IF( .NOT.dotype( imode ) )
233  \$ GO TO 50
234 *
235 * Do for each type of singular value distribution.
236 * 0: zero matrix
237 * 1: one small singular value
238 * 2: exponential distribution
239 *
240  mode = imode - 1
241 *
242 * Test DTZRQF
243 *
244 * Generate test matrix of size m by n using
245 * singular value distribution indicated by `mode'.
246 *
247  IF( mode.EQ.0 ) THEN
248  CALL dlaset( 'Full', m, n, zero, zero, a, lda )
249  DO 30 i = 1, mnmin
250  s( i ) = zero
251  30 CONTINUE
252  ELSE
253  CALL dlatms( m, n, 'Uniform', iseed,
254  \$ 'Nonsymmetric', s, imode,
255  \$ one / eps, one, m, n, 'No packing', a,
256  \$ lda, work, info )
257  CALL dgeqr2( m, n, a, lda, work, work( mnmin+1 ),
258  \$ info )
259  CALL dlaset( 'Lower', m-1, n, zero, zero, a( 2 ),
260  \$ lda )
261  CALL dlaord( 'Decreasing', mnmin, s, 1 )
262  END IF
263 *
264 * Save A and its singular values
265 *
266  CALL dlacpy( 'All', m, n, a, lda, copya, lda )
267 *
268 * Call DTZRZF to reduce the upper trapezoidal matrix to
269 * upper triangular form.
270 *
271  srnamt = 'DTZRZF'
272  CALL dtzrzf( m, n, a, lda, tau, work, lwork, info )
273 *
274 * Compute norm(svd(a) - svd(r))
275 *
276  result( 1 ) = dqrt12( m, m, a, lda, s, work,
277  \$ lwork )
278 *
279 * Compute norm( A - R*Q )
280 *
281  result( 2 ) = drzt01( m, n, copya, a, lda, tau, work,
282  \$ lwork )
283 *
284 * Compute norm(Q'*Q - I).
285 *
286  result( 3 ) = drzt02( m, n, a, lda, tau, work, lwork )
287 *
288 * Print information about the tests that did not pass
289 * the threshold.
290 *
291  DO 40 k = 1, ntests
292  IF( result( k ).GE.thresh ) THEN
293  IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
294  \$ CALL alahd( nout, path )
295  WRITE( nout, fmt = 9999 )m, n, imode, k,
296  \$ result( k )
297  nfail = nfail + 1
298  END IF
299  40 CONTINUE
300  nrun = nrun + 3
301  50 CONTINUE
302  END IF
303  60 CONTINUE
304  70 CONTINUE
305 *
306 * Print a summary of the results.
307 *
308  CALL alasum( path, nout, nfail, nrun, nerrs )
309 *
310  9999 FORMAT( ' M =', i5, ', N =', i5, ', type ', i2, ', test ', i2,
311  \$ ', ratio =', g12.5 )
312 *
313 * End if DCHKTZ
314 *
subroutine dlatms(M, N, DIST, ISEED, SYM, D, MODE, COND, DMAX, KL, KU, PACK, A, LDA, WORK, INFO)
DLATMS
Definition: dlatms.f:323
subroutine dgeqr2(M, N, A, LDA, TAU, WORK, INFO)
DGEQR2 computes the QR factorization of a general rectangular matrix using an unblocked algorithm...
Definition: dgeqr2.f:123
subroutine derrtz(PATH, NUNIT)
DERRTZ
Definition: derrtz.f:56
double precision function drzt02(M, N, AF, LDA, TAU, WORK, LWORK)
DRZT02
Definition: drzt02.f:93
subroutine alasum(TYPE, NOUT, NFAIL, NRUN, NERRS)
ALASUM
Definition: alasum.f:75
subroutine alahd(IOUNIT, PATH)
ALAHD
Definition: alahd.f:107
subroutine dlaord(JOB, N, X, INCX)
DLAORD
Definition: dlaord.f:75
double precision function dqrt12(M, N, A, LDA, S, WORK, LWORK)
DQRT12
Definition: dqrt12.f:91
double precision function drzt01(M, N, A, AF, LDA, TAU, WORK, LWORK)
DRZT01
Definition: drzt01.f:100
subroutine dlaset(UPLO, M, N, ALPHA, BETA, A, LDA)
DLASET initializes the off-diagonal elements and the diagonal elements of a matrix to given values...
Definition: dlaset.f:112
double precision function dlamch(CMACH)
DLAMCH
Definition: dlamch.f:65
subroutine dlacpy(UPLO, M, N, A, LDA, B, LDB)
DLACPY copies all or part of one two-dimensional array to another.
Definition: dlacpy.f:105
subroutine dtzrzf(M, N, A, LDA, TAU, WORK, LWORK, INFO)
DTZRZF
Definition: dtzrzf.f:153
Here is the call graph for this function:
Here is the caller graph for this function: