![]() |
LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
|
subroutine cunmbr | ( | character | vect, |
character | side, | ||
character | trans, | ||
integer | m, | ||
integer | n, | ||
integer | k, | ||
complex, dimension( lda, * ) | a, | ||
integer | lda, | ||
complex, dimension( * ) | tau, | ||
complex, dimension( ldc, * ) | c, | ||
integer | ldc, | ||
complex, dimension( * ) | work, | ||
integer | lwork, | ||
integer | info ) |
CUNMBR
Download CUNMBR + dependencies [TGZ] [ZIP] [TXT]
!> !> If VECT = 'Q', CUNMBR overwrites the general complex M-by-N matrix C !> with !> SIDE = 'L' SIDE = 'R' !> TRANS = 'N': Q * C C * Q !> TRANS = 'C': Q**H * C C * Q**H !> !> If VECT = 'P', CUNMBR overwrites the general complex M-by-N matrix C !> with !> SIDE = 'L' SIDE = 'R' !> TRANS = 'N': P * C C * P !> TRANS = 'C': P**H * C C * P**H !> !> Here Q and P**H are the unitary matrices determined by CGEBRD when !> reducing a complex matrix A to bidiagonal form: A = Q * B * P**H. Q !> and P**H are defined as products of elementary reflectors H(i) and !> G(i) respectively. !> !> Let nq = m if SIDE = 'L' and nq = n if SIDE = 'R'. Thus nq is the !> order of the unitary matrix Q or P**H that is applied. !> !> If VECT = 'Q', A is assumed to have been an NQ-by-K matrix: !> if nq >= k, Q = H(1) H(2) . . . H(k); !> if nq < k, Q = H(1) H(2) . . . H(nq-1). !> !> If VECT = 'P', A is assumed to have been a K-by-NQ matrix: !> if k < nq, P = G(1) G(2) . . . G(k); !> if k >= nq, P = G(1) G(2) . . . G(nq-1). !>
[in] | VECT | !> VECT is CHARACTER*1 !> = 'Q': apply Q or Q**H; !> = 'P': apply P or P**H. !> |
[in] | SIDE | !> SIDE is CHARACTER*1 !> = 'L': apply Q, Q**H, P or P**H from the Left; !> = 'R': apply Q, Q**H, P or P**H from the Right. !> |
[in] | TRANS | !> TRANS is CHARACTER*1 !> = 'N': No transpose, apply Q or P; !> = 'C': Conjugate transpose, apply Q**H or P**H. !> |
[in] | M | !> M is INTEGER !> The number of rows of the matrix C. M >= 0. !> |
[in] | N | !> N is INTEGER !> The number of columns of the matrix C. N >= 0. !> |
[in] | K | !> K is INTEGER !> If VECT = 'Q', the number of columns in the original !> matrix reduced by CGEBRD. !> If VECT = 'P', the number of rows in the original !> matrix reduced by CGEBRD. !> K >= 0. !> |
[in] | A | !> A is COMPLEX array, dimension !> (LDA,min(nq,K)) if VECT = 'Q' !> (LDA,nq) if VECT = 'P' !> The vectors which define the elementary reflectors H(i) and !> G(i), whose products determine the matrices Q and P, as !> returned by CGEBRD. !> |
[in] | LDA | !> LDA is INTEGER !> The leading dimension of the array A. !> If VECT = 'Q', LDA >= max(1,nq); !> if VECT = 'P', LDA >= max(1,min(nq,K)). !> |
[in] | TAU | !> TAU is COMPLEX array, dimension (min(nq,K)) !> TAU(i) must contain the scalar factor of the elementary !> reflector H(i) or G(i) which determines Q or P, as returned !> by CGEBRD in the array argument TAUQ or TAUP. !> |
[in,out] | C | !> C is COMPLEX array, dimension (LDC,N) !> On entry, the M-by-N matrix C. !> On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q !> or P*C or P**H*C or C*P or C*P**H. !> |
[in] | LDC | !> LDC is INTEGER !> The leading dimension of the array C. LDC >= max(1,M). !> |
[out] | WORK | !> WORK is COMPLEX array, dimension (MAX(1,LWORK)) !> On exit, if INFO = 0, WORK(1) returns the optimal LWORK. !> |
[in] | LWORK | !> LWORK is INTEGER !> The dimension of the array WORK. !> If SIDE = 'L', LWORK >= max(1,N); !> if SIDE = 'R', LWORK >= max(1,M); !> if N = 0 or M = 0, LWORK >= 1. !> For optimum performance LWORK >= max(1,N*NB) if SIDE = 'L', !> and LWORK >= max(1,M*NB) if SIDE = 'R', where NB is the !> optimal blocksize. (NB = 0 if M = 0 or N = 0.) !> !> If LWORK = -1, then a workspace query is assumed; the routine !> only calculates the optimal size of the WORK array, returns !> this value as the first entry of the WORK array, and no error !> message related to LWORK is issued by XERBLA. !> |
[out] | INFO | !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> |
Definition at line 193 of file cunmbr.f.