84      EXTERNAL           lsame, lsamen
 
   90      sord = lsame( path, 
'S' ) .OR. lsame( path, 
'D' )
 
   91      corz = lsame( path, 
'C' ) .OR. lsame( path, 
'Z' )
 
   92      IF( .NOT.sord .AND. .NOT.corz ) 
THEN 
   93         WRITE( iounit, fmt = 9999 )path
 
   97      IF( lsamen( 2, c2, 
'HS' ) ) 
THEN 
  102            WRITE( iounit, fmt = 9998 )path
 
  106            WRITE( iounit, fmt = 9988 )
 
  107            WRITE( iounit, fmt = 9987 )
 
  108            WRITE( iounit, fmt = 9986 )
'pairs ', 
'pairs ', 
'prs.',
 
  110            WRITE( iounit, fmt = 9985 )
 
  114            WRITE( iounit, fmt = 9984 )
'orthogonal', 
'''=transpose',
 
  121            WRITE( iounit, fmt = 9997 )path
 
  125            WRITE( iounit, fmt = 9988 )
 
  126            WRITE( iounit, fmt = 9987 )
 
  127            WRITE( iounit, fmt = 9986 )
'e.vals', 
'e.vals', 
'e.vs',
 
  129            WRITE( iounit, fmt = 9985 )
 
  133            WRITE( iounit, fmt = 9984 )
'unitary', 
'*=conj.transp.',
 
  137      ELSE IF( lsamen( 2, c2, 
'ST' ) ) 
THEN 
  143            WRITE( iounit, fmt = 9996 )path
 
  147            WRITE( iounit, fmt = 9983 )
 
  148            WRITE( iounit, fmt = 9982 )
 
  149            WRITE( iounit, fmt = 9981 )
'Symmetric' 
  153            WRITE( iounit, fmt = 9968 )
 
  159            WRITE( iounit, fmt = 9995 )path
 
  163            WRITE( iounit, fmt = 9983 )
 
  164            WRITE( iounit, fmt = 9982 )
 
  165            WRITE( iounit, fmt = 9981 )
'Hermitian' 
  169            WRITE( iounit, fmt = 9967 )
 
  172      ELSE IF( lsamen( 2, c2, 
'SG' ) ) 
THEN 
  178            WRITE( iounit, fmt = 9992 )path
 
  182            WRITE( iounit, fmt = 9980 )
 
  183            WRITE( iounit, fmt = 9979 )
 
  184            WRITE( iounit, fmt = 9978 )
'Symmetric' 
  188            WRITE( iounit, fmt = 9977 )
 
  189            WRITE( iounit, fmt = 9976 )
 
  195            WRITE( iounit, fmt = 9991 )path
 
  199            WRITE( iounit, fmt = 9980 )
 
  200            WRITE( iounit, fmt = 9979 )
 
  201            WRITE( iounit, fmt = 9978 )
'Hermitian' 
  205            WRITE( iounit, fmt = 9975 )
 
  206            WRITE( iounit, fmt = 9974 )
 
  210      ELSE IF( lsamen( 2, c2, 
'BD' ) ) 
THEN 
  216            WRITE( iounit, fmt = 9994 )path
 
  220            WRITE( iounit, fmt = 9973 )
 
  224            WRITE( iounit, fmt = 9972 )
'orthogonal' 
  225            WRITE( iounit, fmt = 9971 )
 
  230            WRITE( iounit, fmt = 9993 )path
 
  234            WRITE( iounit, fmt = 9973 )
 
  238            WRITE( iounit, fmt = 9972 )
'unitary   ' 
  239            WRITE( iounit, fmt = 9971 )
 
  242      ELSE IF( lsamen( 2, c2, 
'BB' ) ) 
THEN 
  248            WRITE( iounit, fmt = 9990 )path
 
  252            WRITE( iounit, fmt = 9970 )
 
  256            WRITE( iounit, fmt = 9969 )
'orthogonal' 
  261            WRITE( iounit, fmt = 9989 )path
 
  265            WRITE( iounit, fmt = 9970 )
 
  269            WRITE( iounit, fmt = 9969 )
'unitary   ' 
  274         WRITE( iounit, fmt = 9999 )path
 
  280 9999 
FORMAT( 1x, a3, 
':  no header available' )
 
  281 9998 
FORMAT( / 1x, a3, 
' -- Real Non-symmetric eigenvalue problem' )
 
  282 9997 
FORMAT( / 1x, a3, 
' -- Complex Non-symmetric eigenvalue problem' )
 
  283 9996 
FORMAT( / 1x, a3, 
' -- Real Symmetric eigenvalue problem' )
 
  284 9995 
FORMAT( / 1x, a3, 
' -- Complex Hermitian eigenvalue problem' )
 
  285 9994 
FORMAT( / 1x, a3, 
' -- Real Singular Value Decomposition' )
 
  286 9993 
FORMAT( / 1x, a3, 
' -- Complex Singular Value Decomposition' )
 
  287 9992 
FORMAT( / 1x, a3, 
' -- Real Symmetric Generalized eigenvalue ',
 
  289 9991 
FORMAT( / 1x, a3, 
' -- Complex Hermitian Generalized eigenvalue ',
 
  291 9990 
FORMAT( / 1x, a3, 
' -- Real Band reduc. to bidiagonal form' )
 
  292 9989 
FORMAT( / 1x, a3, 
' -- Complex Band reduc. to bidiagonal form' )
 
  294 9988 
FORMAT( 
' Matrix types (see xCHKHS for details): ' )
 
  296 9987 
FORMAT( / 
' Special Matrices:', / 
'  1=Zero matrix.             ',
 
  297     $      
'           ', 
'  5=Diagonal: geometr. spaced entries.',
 
  298     $      / 
'  2=Identity matrix.                    ', 
'  6=Diagona',
 
  299     $      
'l: clustered entries.', / 
'  3=Transposed Jordan block.  ',
 
  300     $      
'          ', 
'  7=Diagonal: large, evenly spaced.', / 
'  ',
 
  301     $      
'4=Diagonal: evenly spaced entries.    ', 
'  8=Diagonal: s',
 
  302     $      
'mall, evenly spaced.' )
 
  303 9986 
FORMAT( 
' Dense, Non-Symmetric Matrices:', / 
'  9=Well-cond., ev',
 
  304     $      
'enly spaced eigenvals.', 
' 14=Ill-cond., geomet. spaced e',
 
  305     $      
'igenals.', / 
' 10=Well-cond., geom. spaced eigenvals. ',
 
  306     $      
' 15=Ill-conditioned, clustered e.vals.', / 
' 11=Well-cond',
 
  307     $      
'itioned, clustered e.vals. ', 
' 16=Ill-cond., random comp',
 
  308     $      
'lex ', a6, / 
' 12=Well-cond., random complex ', a6, 
'   ',
 
  309     $      
' 17=Ill-cond., large rand. complx ', a4, / 
' 13=Ill-condi',
 
  310     $      
'tioned, evenly spaced.     ', 
' 18=Ill-cond., small rand.',
 
  312 9985 
FORMAT( 
' 19=Matrix with random O(1) entries.    ', 
' 21=Matrix ',
 
  313     $      
'with small random entries.', / 
' 20=Matrix with large ran',
 
  315 9984 
FORMAT( / 
' Tests performed:   ', 
'(H is Hessenberg, T is Schur,',
 
  316     $      
' U and Z are ', a, 
',', / 20x, a, 
', W is a diagonal matr',
 
  317     $      
'ix of eigenvalues,', / 20x, 
'L and R are the left and rig',
 
  318     $      
'ht eigenvector matrices)', / 
'  1 = | A - U H U', a1, 
' |',
 
  319     $      
' / ( |A| n ulp )         ', 
'  2 = | I - U U', a1, 
' | / ',
 
  320     $      
'( n ulp )', / 
'  3 = | H - Z T Z', a1, 
' | / ( |H| n ulp ',
 
  321     $      
')         ', 
'  4 = | I - Z Z', a1, 
' | / ( n ulp )',
 
  322     $      / 
'  5 = | A - UZ T (UZ)', a1, 
' | / ( |A| n ulp )     ',
 
  323     $      
'  6 = | I - UZ (UZ)', a1, 
' | / ( n ulp )', / 
'  7 = | T(',
 
  324     $      
'e.vects.) - T(no e.vects.) | / ( |T| ulp )', / 
'  8 = | W',
 
  325     $      
'(e.vects.) - W(no e.vects.) | / ( |W| ulp )', / 
'  9 = | ',
 
  326     $      
'TR - RW | / ( |T| |R| ulp )     ', 
' 10 = | LT - WL | / (',
 
  327     $      
' |T| |L| ulp )', / 
' 11= |HX - XW| / (|H| |X| ulp)  (inv.',
 
  328     $      
'it)', 
' 12= |YH - WY| / (|H| |Y| ulp)  (inv.it)' )
 
  332 9983 
FORMAT( 
' Matrix types (see xDRVST for details): ' )
 
  334 9982 
FORMAT( / 
' Special Matrices:', / 
'  1=Zero matrix.             ',
 
  335     $      
'           ', 
'  5=Diagonal: clustered entries.', / 
'  2=',
 
  336     $      
'Identity matrix.                    ', 
'  6=Diagonal: lar',
 
  337     $      
'ge, evenly spaced.', / 
'  3=Diagonal: evenly spaced entri',
 
  338     $      
'es.    ', 
'  7=Diagonal: small, evenly spaced.', / 
'  4=D',
 
  339     $      
'iagonal: geometr. spaced entries.' )
 
  340 9981 
FORMAT( 
' Dense ', a, 
' Matrices:', / 
'  8=Evenly spaced eigen',
 
  341     $      
'vals.            ', 
' 12=Small, evenly spaced eigenvals.',
 
  342     $      / 
'  9=Geometrically spaced eigenvals.     ', 
' 13=Matrix ',
 
  343     $      
'with random O(1) entries.', / 
' 10=Clustered eigenvalues.',
 
  344     $      
'              ', 
' 14=Matrix with large random entries.',
 
  345     $      / 
' 11=Large, evenly spaced eigenvals.     ', 
' 15=Matrix ',
 
  346     $      
'with small random entries.' )
 
  350 9980 
FORMAT( 
' Matrix types (see xDRVSG for details): ' )
 
  352 9979 
FORMAT( / 
' Special Matrices:', / 
'  1=Zero matrix.             ',
 
  353     $      
'           ', 
'  5=Diagonal: clustered entries.', / 
'  2=',
 
  354     $      
'Identity matrix.                    ', 
'  6=Diagonal: lar',
 
  355     $      
'ge, evenly spaced.', / 
'  3=Diagonal: evenly spaced entri',
 
  356     $      
'es.    ', 
'  7=Diagonal: small, evenly spaced.', / 
'  4=D',
 
  357     $      
'iagonal: geometr. spaced entries.' )
 
  358 9978 
FORMAT( 
' Dense or Banded ', a, 
' Matrices: ',
 
  359     $      / 
'  8=Evenly spaced eigenvals.         ',
 
  360     $      
' 15=Matrix with small random entries.',
 
  361     $      / 
'  9=Geometrically spaced eigenvals.  ',
 
  362     $      
' 16=Evenly spaced eigenvals, KA=1, KB=1.',
 
  363     $      / 
' 10=Clustered eigenvalues.           ',
 
  364     $      
' 17=Evenly spaced eigenvals, KA=2, KB=1.',
 
  365     $      / 
' 11=Large, evenly spaced eigenvals.  ',
 
  366     $      
' 18=Evenly spaced eigenvals, KA=2, KB=2.',
 
  367     $      / 
' 12=Small, evenly spaced eigenvals.  ',
 
  368     $      
' 19=Evenly spaced eigenvals, KA=3, KB=1.',
 
  369     $      / 
' 13=Matrix with random O(1) entries. ',
 
  370     $      
' 20=Evenly spaced eigenvals, KA=3, KB=2.',
 
  371     $      / 
' 14=Matrix with large random entries.',
 
  372     $      
' 21=Evenly spaced eigenvals, KA=3, KB=3.' )
 
  373 9977 
FORMAT( / 
' Tests performed:   ',
 
  374     $      / 
'( For each pair (A,B), where A is of the given type ',
 
  375     $      / 
' and B is a random well-conditioned matrix. D is ',
 
  376     $      / 
' diagonal, and Z is orthogonal. )',
 
  377     $      / 
' 1 = DSYGV, with ITYPE=1 and UPLO=''U'':',
 
  378     $      
'  | A Z - B Z D | / ( |A| |Z| n ulp )     ',
 
  379     $      / 
' 2 = DSPGV, with ITYPE=1 and UPLO=''U'':',
 
  380     $      
'  | A Z - B Z D | / ( |A| |Z| n ulp )     ',
 
  381     $      / 
' 3 = DSBGV, with ITYPE=1 and UPLO=''U'':',
 
  382     $      
'  | A Z - B Z D | / ( |A| |Z| n ulp )     ',
 
  383     $      / 
' 4 = DSYGV, with ITYPE=1 and UPLO=''L'':',
 
  384     $      
'  | A Z - B Z D | / ( |A| |Z| n ulp )     ',
 
  385     $      / 
' 5 = DSPGV, with ITYPE=1 and UPLO=''L'':',
 
  386     $      
'  | A Z - B Z D | / ( |A| |Z| n ulp )     ',
 
  387     $      / 
' 6 = DSBGV, with ITYPE=1 and UPLO=''L'':',
 
  388     $      
'  | A Z - B Z D | / ( |A| |Z| n ulp )     ' )
 
  389 9976 
FORMAT( 
' 7 = DSYGV, with ITYPE=2 and UPLO=''U'':',
 
  390     $      
'  | A B Z - Z D | / ( |A| |Z| n ulp )     ',
 
  391     $      / 
' 8 = DSPGV, with ITYPE=2 and UPLO=''U'':',
 
  392     $      
'  | A B Z - Z D | / ( |A| |Z| n ulp )     ',
 
  393     $      / 
' 9 = DSPGV, with ITYPE=2 and UPLO=''L'':',
 
  394     $      
'  | A B Z - Z D | / ( |A| |Z| n ulp )     ',
 
  395     $      / 
'10 = DSPGV, with ITYPE=2 and UPLO=''L'':',
 
  396     $      
'  | A B Z - Z D | / ( |A| |Z| n ulp )     ',
 
  397     $      / 
'11 = DSYGV, with ITYPE=3 and UPLO=''U'':',
 
  398     $      
'  | B A Z - Z D | / ( |A| |Z| n ulp )     ',
 
  399     $      / 
'12 = DSPGV, with ITYPE=3 and UPLO=''U'':',
 
  400     $      
'  | B A Z - Z D | / ( |A| |Z| n ulp )     ',
 
  401     $      / 
'13 = DSYGV, with ITYPE=3 and UPLO=''L'':',
 
  402     $      
'  | B A Z - Z D | / ( |A| |Z| n ulp )     ',
 
  403     $      / 
'14 = DSPGV, with ITYPE=3 and UPLO=''L'':',
 
  404     $      
'  | B A Z - Z D | / ( |A| |Z| n ulp )     ' )
 
  405 9975 
FORMAT( / 
' Tests performed:   ',
 
  406     $      / 
'( For each pair (A,B), where A is of the given type ',
 
  407     $      / 
' and B is a random well-conditioned matrix. D is ',
 
  408     $      / 
' diagonal, and Z is unitary. )',
 
  409     $      / 
' 1 = ZHEGV, with ITYPE=1 and UPLO=''U'':',
 
  410     $      
'  | A Z - B Z D | / ( |A| |Z| n ulp )     ',
 
  411     $      / 
' 2 = ZHPGV, with ITYPE=1 and UPLO=''U'':',
 
  412     $      
'  | A Z - B Z D | / ( |A| |Z| n ulp )     ',
 
  413     $      / 
' 3 = ZHBGV, with ITYPE=1 and UPLO=''U'':',
 
  414     $      
'  | A Z - B Z D | / ( |A| |Z| n ulp )     ',
 
  415     $      / 
' 4 = ZHEGV, with ITYPE=1 and UPLO=''L'':',
 
  416     $      
'  | A Z - B Z D | / ( |A| |Z| n ulp )     ',
 
  417     $      / 
' 5 = ZHPGV, with ITYPE=1 and UPLO=''L'':',
 
  418     $      
'  | A Z - B Z D | / ( |A| |Z| n ulp )     ',
 
  419     $      / 
' 6 = ZHBGV, with ITYPE=1 and UPLO=''L'':',
 
  420     $      
'  | A Z - B Z D | / ( |A| |Z| n ulp )     ' )
 
  421 9974 
FORMAT( 
' 7 = ZHEGV, with ITYPE=2 and UPLO=''U'':',
 
  422     $      
'  | A B Z - Z D | / ( |A| |Z| n ulp )     ',
 
  423     $      / 
' 8 = ZHPGV, with ITYPE=2 and UPLO=''U'':',
 
  424     $      
'  | A B Z - Z D | / ( |A| |Z| n ulp )     ',
 
  425     $      / 
' 9 = ZHPGV, with ITYPE=2 and UPLO=''L'':',
 
  426     $      
'  | A B Z - Z D | / ( |A| |Z| n ulp )     ',
 
  427     $      / 
'10 = ZHPGV, with ITYPE=2 and UPLO=''L'':',
 
  428     $      
'  | A B Z - Z D | / ( |A| |Z| n ulp )     ',
 
  429     $      / 
'11 = ZHEGV, with ITYPE=3 and UPLO=''U'':',
 
  430     $      
'  | B A Z - Z D | / ( |A| |Z| n ulp )     ',
 
  431     $      / 
'12 = ZHPGV, with ITYPE=3 and UPLO=''U'':',
 
  432     $      
'  | B A Z - Z D | / ( |A| |Z| n ulp )     ',
 
  433     $      / 
'13 = ZHEGV, with ITYPE=3 and UPLO=''L'':',
 
  434     $      
'  | B A Z - Z D | / ( |A| |Z| n ulp )     ',
 
  435     $      / 
'14 = ZHPGV, with ITYPE=3 and UPLO=''L'':',
 
  436     $      
'  | B A Z - Z D | / ( |A| |Z| n ulp )     ' )
 
  440 9973 
FORMAT( 
' Matrix types (see xCHKBD for details):',
 
  441     $      / 
' Diagonal matrices:', / 
'   1: Zero', 28x,
 
  442     $      
' 5: Clustered entries', / 
'   2: Identity', 24x,
 
  443     $      
' 6: Large, evenly spaced entries',
 
  444     $      / 
'   3: Evenly spaced entries', 11x,
 
  445     $      
' 7: Small, evenly spaced entries',
 
  446     $      / 
'   4: Geometrically spaced entries',
 
  447     $      / 
' General matrices:', / 
'   8: Evenly spaced sing. vals.',
 
  448     $      7x, 
'12: Small, evenly spaced sing vals',
 
  449     $      / 
'   9: Geometrically spaced sing vals  ',
 
  450     $      
'13: Random, O(1) entries', / 
'  10: Clustered sing. vals.',
 
  451     $      11x, 
'14: Random, scaled near overflow',
 
  452     $      / 
'  11: Large, evenly spaced sing vals  ',
 
  453     $      
'15: Random, scaled near underflow' )
 
  455 9972 
FORMAT( / 
' Test ratios:  ',
 
  456     $      
'(B: bidiagonal, S: diagonal, Q, P, U, and V: ', a10, / 16x,
 
  457     $      
'X: m x nrhs, Y = Q'' X, and Z = U'' Y)' )
 
  458 9971 
FORMAT( 
'   1: norm( A - Q B P'' ) / ( norm(A) max(m,n) ulp )',
 
  459     $      / 
'   2: norm( I - Q'' Q )   / ( m ulp )',
 
  460     $      / 
'   3: norm( I - P'' P )   / ( n ulp )',
 
  461     $      / 
'   4: norm( B - U S V'' ) / ( norm(B) min(m,n) ulp )',
 
  462     $      / 
'   5: norm( Y - U Z )    / ',
 
  463     $        
'( norm(Z) max(min(m,n),k) ulp )',
 
  464     $      / 
'   6: norm( I - U'' U )   / ( min(m,n) ulp )',
 
  465     $      / 
'   7: norm( I - V'' V )   / ( min(m,n) ulp )',
 
  466     $      / 
'   8: Test ordering of S  (0 if nondecreasing, 1/ulp ',
 
  468     $      / 
'   9: norm( S - S1 )     / ( norm(S) ulp ),',
 
  469     $        
' where S1 is computed', / 43x,
 
  470     $        
' without computing U and V''',
 
  471     $      / 
'  10: Sturm sequence test ',
 
  472     $        
'(0 if sing. vals of B within THRESH of S)',
 
  473     $      / 
'  11: norm( A - (QU) S (V'' P'') ) / ',
 
  474     $        
'( norm(A) max(m,n) ulp )',
 
  475     $      / 
'  12: norm( X - (QU) Z )         / ( |X| max(M,k) ulp )',
 
  476     $      / 
'  13: norm( I - (QU)''(QU) )      / ( M ulp )',
 
  477     $      / 
'  14: norm( I - (V'' P'') (P V) )  / ( N ulp )',
 
  478     $      / 
'  15: norm( B - U S V'' ) / ( norm(B) min(m,n) ulp )',
 
  479     $      / 
'  16: norm( I - U'' U )   / ( min(m,n) ulp )',
 
  480     $      / 
'  17: norm( I - V'' V )   / ( min(m,n) ulp )',
 
  481     $      / 
'  18: Test ordering of S  (0 if nondecreasing, 1/ulp ',
 
  483     $      / 
'  19: norm( S - S1 )     / ( norm(S) ulp ),',
 
  484     $        
' where S1 is computed', / 43x,
 
  485     $        
' without computing U and V''',
 
  486     $      / 
'  20: norm( B - U S V'' )  / ( norm(B) min(m,n) ulp )',
 
  488     $      / 
'  21: norm( I - U'' U )    / ( min(m,n) ulp )',
 
  489     $      / 
'  22: norm( I - V'' V )    / ( min(m,n) ulp )',
 
  490     $      / 
'  23: Test ordering of S  (0 if nondecreasing, 1/ulp ',
 
  492     $      / 
'  24: norm( S - S1 )      / ( norm(S) ulp ),',
 
  493     $        
' where S1 is computed', / 44x,
 
  494     $        
' without computing U and V''',
 
  495     $      / 
'  25: norm( S - U'' B V ) / ( norm(B) n ulp )',
 
  497     $      / 
'  26: norm( I - U'' U )    / ( min(m,n) ulp )',
 
  498     $      / 
'  27: norm( I - V'' V )    / ( min(m,n) ulp )',
 
  499     $      / 
'  28: Test ordering of S  (0 if nondecreasing, 1/ulp ',
 
  501     $      / 
'  29: norm( S - S1 )      / ( norm(S) ulp ),',
 
  502     $        
' where S1 is computed', / 44x,
 
  503     $        
' without computing U and V''',
 
  504     $      / 
'  30: norm( S - U'' B V ) / ( norm(B) n ulp )',
 
  506     $      / 
'  31: norm( I - U'' U )    / ( min(m,n) ulp )',
 
  507     $      / 
'  32: norm( I - V'' V )    / ( min(m,n) ulp )',
 
  508     $      / 
'  33: Test ordering of S  (0 if nondecreasing, 1/ulp ',
 
  510     $      / 
'  34: norm( S - S1 )      / ( norm(S) ulp ),',
 
  511     $        
' where S1 is computed', / 44x,
 
  512     $        
' without computing U and V''' )
 
  516 9970 
FORMAT( 
' Matrix types (see xCHKBB for details):',
 
  517     $      / 
' Diagonal matrices:', / 
'   1: Zero', 28x,
 
  518     $      
' 5: Clustered entries', / 
'   2: Identity', 24x,
 
  519     $      
' 6: Large, evenly spaced entries',
 
  520     $      / 
'   3: Evenly spaced entries', 11x,
 
  521     $      
' 7: Small, evenly spaced entries',
 
  522     $      / 
'   4: Geometrically spaced entries',
 
  523     $      / 
' General matrices:', / 
'   8: Evenly spaced sing. vals.',
 
  524     $      7x, 
'12: Small, evenly spaced sing vals',
 
  525     $      / 
'   9: Geometrically spaced sing vals  ',
 
  526     $      
'13: Random, O(1) entries', / 
'  10: Clustered sing. vals.',
 
  527     $      11x, 
'14: Random, scaled near overflow',
 
  528     $      / 
'  11: Large, evenly spaced sing vals  ',
 
  529     $      
'15: Random, scaled near underflow' )
 
  531 9969 
FORMAT( / 
' Test ratios:  ', 
'(B: upper bidiagonal, Q and P: ',
 
  532     $      a10, / 16x, 
'C: m x nrhs, PT = P'', Y = Q'' C)',
 
  533     $      / 
' 1: norm( A - Q B PT ) / ( norm(A) max(m,n) ulp )',
 
  534     $      / 
' 2: norm( I - Q'' Q )   / ( m ulp )',
 
  535     $      / 
' 3: norm( I - PT PT'' )   / ( n ulp )',
 
  536     $      / 
' 4: norm( Y - Q'' C )   / ( norm(Y) max(m,nrhs) ulp )' )
 
  537 9968 
FORMAT( / 
' Tests performed:  See ddrvst.f' )
 
  538 9967 
FORMAT( / 
' Tests performed:  See zdrvst.f' )