![]() |
LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
|
subroutine dlartg | ( | real(wp) | f, |
real(wp) | g, | ||
real(wp) | c, | ||
real(wp) | s, | ||
real(wp) | r ) |
DLARTG generates a plane rotation with real cosine and real sine.
!> !> DLARTG generates a plane rotation so that !> !> [ C S ] . [ F ] = [ R ] !> [ -S C ] [ G ] [ 0 ] !> !> where C**2 + S**2 = 1. !> !> The mathematical formulas used for C and S are !> R = sign(F) * sqrt(F**2 + G**2) !> C = F / R !> S = G / R !> Hence C >= 0. The algorithm used to compute these quantities !> incorporates scaling to avoid overflow or underflow in computing the !> square root of the sum of squares. !> !> This version is discontinuous in R at F = 0 but it returns the same !> C and S as ZLARTG for complex inputs (F,0) and (G,0). !> !> This is a more accurate version of the BLAS1 routine DROTG, !> with the following other differences: !> F and G are unchanged on return. !> If G=0, then C=1 and S=0. !> If F=0 and (G .ne. 0), then C=0 and S=sign(1,G) without doing any !> floating point operations (saves work in DBDSQR when !> there are zeros on the diagonal). !> !> Below, wp=>dp stands for double precision from LA_CONSTANTS module. !>
[in] | F | !> F is REAL(wp) !> The first component of vector to be rotated. !> |
[in] | G | !> G is REAL(wp) !> The second component of vector to be rotated. !> |
[out] | C | !> C is REAL(wp) !> The cosine of the rotation. !> |
[out] | S | !> S is REAL(wp) !> The sine of the rotation. !> |
[out] | R | !> R is REAL(wp) !> The nonzero component of the rotated vector. !> |
!> !> Anderson E. (2017) !> Algorithm 978: Safe Scaling in the Level 1 BLAS !> ACM Trans Math Softw 44:1--28 !> https://doi.org/10.1145/3061665 !> !>
Definition at line 110 of file dlartg.f90.