![]() |
LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
|
| subroutine zlartg | ( | complex(wp) | f, |
| complex(wp) | g, | ||
| real(wp) | c, | ||
| complex(wp) | s, | ||
| complex(wp) | r ) |
ZLARTG generates a plane rotation with real cosine and complex sine.
!>
!> ZLARTG generates a plane rotation so that
!>
!> [ C S ] . [ F ] = [ R ]
!> [ -conjg(S) C ] [ G ] [ 0 ]
!>
!> where C is real and C**2 + |S|**2 = 1.
!>
!> The mathematical formulas used for C and S are
!>
!> sgn(x) = { x / |x|, x != 0
!> { 1, x = 0
!>
!> R = sgn(F) * sqrt(|F|**2 + |G|**2)
!>
!> C = |F| / sqrt(|F|**2 + |G|**2)
!>
!> S = sgn(F) * conjg(G) / sqrt(|F|**2 + |G|**2)
!>
!> Special conditions:
!> If G=0, then C=1 and S=0.
!> If F=0, then C=0 and S is chosen so that R is real.
!>
!> When F and G are real, the formulas simplify to C = F/R and
!> S = G/R, and the returned values of C, S, and R should be
!> identical to those returned by DLARTG.
!>
!> The algorithm used to compute these quantities incorporates scaling
!> to avoid overflow or underflow in computing the square root of the
!> sum of squares.
!>
!> This is the same routine ZROTG fom BLAS1, except that
!> F and G are unchanged on return.
!>
!> Below, wp=>dp stands for double precision from LA_CONSTANTS module.
!> | [in] | F | !> F is COMPLEX(wp) !> The first component of vector to be rotated. !> |
| [in] | G | !> G is COMPLEX(wp) !> The second component of vector to be rotated. !> |
| [out] | C | !> C is REAL(wp) !> The cosine of the rotation. !> |
| [out] | S | !> S is COMPLEX(wp) !> The sine of the rotation. !> |
| [out] | R | !> R is COMPLEX(wp) !> The nonzero component of the rotated vector. !> |
!> !> Based on the algorithm from !> !> Anderson E. (2017) !> Algorithm 978: Safe Scaling in the Level 1 BLAS !> ACM Trans Math Softw 44:1--28 !> https://doi.org/10.1145/3061665 !> !>
Definition at line 115 of file zlartg.f90.