 LAPACK  3.10.0 LAPACK: Linear Algebra PACKage

◆ zpot02()

 subroutine zpot02 ( character UPLO, integer N, integer NRHS, complex*16, dimension( lda, * ) A, integer LDA, complex*16, dimension( ldx, * ) X, integer LDX, complex*16, dimension( ldb, * ) B, integer LDB, double precision, dimension( * ) RWORK, double precision RESID )

ZPOT02

Purpose:
ZPOT02 computes the residual for the solution of a Hermitian system
of linear equations  A*x = b:

RESID = norm(B - A*X) / ( norm(A) * norm(X) * EPS ),

where EPS is the machine epsilon.
Parameters
 [in] UPLO UPLO is CHARACTER*1 Specifies whether the upper or lower triangular part of the Hermitian matrix A is stored: = 'U': Upper triangular = 'L': Lower triangular [in] N N is INTEGER The number of rows and columns of the matrix A. N >= 0. [in] NRHS NRHS is INTEGER The number of columns of B, the matrix of right hand sides. NRHS >= 0. [in] A A is COMPLEX*16 array, dimension (LDA,N) The original Hermitian matrix A. [in] LDA LDA is INTEGER The leading dimension of the array A. LDA >= max(1,N) [in] X X is COMPLEX*16 array, dimension (LDX,NRHS) The computed solution vectors for the system of linear equations. [in] LDX LDX is INTEGER The leading dimension of the array X. LDX >= max(1,N). [in,out] B B is COMPLEX*16 array, dimension (LDB,NRHS) On entry, the right hand side vectors for the system of linear equations. On exit, B is overwritten with the difference B - A*X. [in] LDB LDB is INTEGER The leading dimension of the array B. LDB >= max(1,N). [out] RWORK RWORK is DOUBLE PRECISION array, dimension (N) [out] RESID RESID is DOUBLE PRECISION The maximum over the number of right hand sides of norm(B - A*X) / ( norm(A) * norm(X) * EPS ).

Definition at line 125 of file zpot02.f.

127 *
128 * -- LAPACK test routine --
129 * -- LAPACK is a software package provided by Univ. of Tennessee, --
130 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
131 *
132 * .. Scalar Arguments ..
133  CHARACTER UPLO
134  INTEGER LDA, LDB, LDX, N, NRHS
135  DOUBLE PRECISION RESID
136 * ..
137 * .. Array Arguments ..
138  DOUBLE PRECISION RWORK( * )
139  COMPLEX*16 A( LDA, * ), B( LDB, * ), X( LDX, * )
140 * ..
141 *
142 * =====================================================================
143 *
144 * .. Parameters ..
145  DOUBLE PRECISION ZERO, ONE
146  parameter( zero = 0.0d+0, one = 1.0d+0 )
147  COMPLEX*16 CONE
148  parameter( cone = ( 1.0d+0, 0.0d+0 ) )
149 * ..
150 * .. Local Scalars ..
151  INTEGER J
152  DOUBLE PRECISION ANORM, BNORM, EPS, XNORM
153 * ..
154 * .. External Functions ..
155  DOUBLE PRECISION DLAMCH, DZASUM, ZLANHE
156  EXTERNAL dlamch, dzasum, zlanhe
157 * ..
158 * .. External Subroutines ..
159  EXTERNAL zhemm
160 * ..
161 * .. Intrinsic Functions ..
162  INTRINSIC max
163 * ..
164 * .. Executable Statements ..
165 *
166 * Quick exit if N = 0 or NRHS = 0.
167 *
168  IF( n.LE.0 .OR. nrhs.LE.0 ) THEN
169  resid = zero
170  RETURN
171  END IF
172 *
173 * Exit with RESID = 1/EPS if ANORM = 0.
174 *
175  eps = dlamch( 'Epsilon' )
176  anorm = zlanhe( '1', uplo, n, a, lda, rwork )
177  IF( anorm.LE.zero ) THEN
178  resid = one / eps
179  RETURN
180  END IF
181 *
182 * Compute B - A*X
183 *
184  CALL zhemm( 'Left', uplo, n, nrhs, -cone, a, lda, x, ldx, cone, b,
185  \$ ldb )
186 *
187 * Compute the maximum over the number of right hand sides of
188 * norm( B - A*X ) / ( norm(A) * norm(X) * EPS ) .
189 *
190  resid = zero
191  DO 10 j = 1, nrhs
192  bnorm = dzasum( n, b( 1, j ), 1 )
193  xnorm = dzasum( n, x( 1, j ), 1 )
194  IF( xnorm.LE.zero ) THEN
195  resid = one / eps
196  ELSE
197  resid = max( resid, ( ( bnorm / anorm ) / xnorm ) / eps )
198  END IF
199  10 CONTINUE
200 *
201  RETURN
202 *
203 * End of ZPOT02
204 *
double precision function dlamch(CMACH)
DLAMCH
Definition: dlamch.f:69
subroutine zhemm(SIDE, UPLO, M, N, ALPHA, A, LDA, B, LDB, BETA, C, LDC)
ZHEMM
Definition: zhemm.f:191
double precision function zlanhe(NORM, UPLO, N, A, LDA, WORK)
ZLANHE returns the value of the 1-norm, or the Frobenius norm, or the infinity norm,...
Definition: zlanhe.f:124
double precision function dzasum(N, ZX, INCX)
DZASUM
Definition: dzasum.f:72
Here is the call graph for this function:
Here is the caller graph for this function: