LAPACK  3.10.1 LAPACK: Linear Algebra PACKage

## ◆ ztpt01()

 subroutine ztpt01 ( character UPLO, character DIAG, integer N, complex*16, dimension( * ) AP, complex*16, dimension( * ) AINVP, double precision RCOND, double precision, dimension( * ) RWORK, double precision RESID )

ZTPT01

Purpose:
``` ZTPT01 computes the residual for a triangular matrix A times its
inverse when A is stored in packed format:
RESID = norm(A*AINV - I) / ( N * norm(A) * norm(AINV) * EPS ),
where EPS is the machine epsilon.```
Parameters
 [in] UPLO ``` UPLO is CHARACTER*1 Specifies whether the matrix A is upper or lower triangular. = 'U': Upper triangular = 'L': Lower triangular``` [in] DIAG ``` DIAG is CHARACTER*1 Specifies whether or not the matrix A is unit triangular. = 'N': Non-unit triangular = 'U': Unit triangular``` [in] N ``` N is INTEGER The order of the matrix A. N >= 0.``` [in] AP ``` AP is COMPLEX*16 array, dimension (N*(N+1)/2) The original upper or lower triangular matrix A, packed columnwise in a linear array. The j-th column of A is stored in the array AP as follows: if UPLO = 'U', AP((j-1)*j/2 + i) = A(i,j) for 1<=i<=j; if UPLO = 'L', AP((j-1)*(n-j) + j*(j+1)/2 + i-j) = A(i,j) for j<=i<=n.``` [in] AINVP ``` AINVP is COMPLEX*16 array, dimension (N*(N+1)/2) On entry, the (triangular) inverse of the matrix A, packed columnwise in a linear array as in AP. On exit, the contents of AINVP are destroyed.``` [out] RCOND ``` RCOND is DOUBLE PRECISION The reciprocal condition number of A, computed as 1/(norm(A) * norm(AINV)).``` [out] RWORK ` RWORK is DOUBLE PRECISION array, dimension (N)` [out] RESID ``` RESID is DOUBLE PRECISION norm(A*AINV - I) / ( N * norm(A) * norm(AINV) * EPS )```

Definition at line 108 of file ztpt01.f.

109 *
110 * -- LAPACK test routine --
111 * -- LAPACK is a software package provided by Univ. of Tennessee, --
112 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
113 *
114 * .. Scalar Arguments ..
115  CHARACTER DIAG, UPLO
116  INTEGER N
117  DOUBLE PRECISION RCOND, RESID
118 * ..
119 * .. Array Arguments ..
120  DOUBLE PRECISION RWORK( * )
121  COMPLEX*16 AINVP( * ), AP( * )
122 * ..
123 *
124 * =====================================================================
125 *
126 * .. Parameters ..
127  DOUBLE PRECISION ZERO, ONE
128  parameter( zero = 0.0d+0, one = 1.0d+0 )
129 * ..
130 * .. Local Scalars ..
131  LOGICAL UNITD
132  INTEGER J, JC
133  DOUBLE PRECISION AINVNM, ANORM, EPS
134 * ..
135 * .. External Functions ..
136  LOGICAL LSAME
137  DOUBLE PRECISION DLAMCH, ZLANTP
138  EXTERNAL lsame, dlamch, zlantp
139 * ..
140 * .. External Subroutines ..
141  EXTERNAL ztpmv
142 * ..
143 * .. Intrinsic Functions ..
144  INTRINSIC dble
145 * ..
146 * .. Executable Statements ..
147 *
148 * Quick exit if N = 0.
149 *
150  IF( n.LE.0 ) THEN
151  rcond = one
152  resid = zero
153  RETURN
154  END IF
155 *
156 * Exit with RESID = 1/EPS if ANORM = 0 or AINVNM = 0.
157 *
158  eps = dlamch( 'Epsilon' )
159  anorm = zlantp( '1', uplo, diag, n, ap, rwork )
160  ainvnm = zlantp( '1', uplo, diag, n, ainvp, rwork )
161  IF( anorm.LE.zero .OR. ainvnm.LE.zero ) THEN
162  rcond = zero
163  resid = one / eps
164  RETURN
165  END IF
166  rcond = ( one / anorm ) / ainvnm
167 *
168 * Compute A * AINV, overwriting AINV.
169 *
170  unitd = lsame( diag, 'U' )
171  IF( lsame( uplo, 'U' ) ) THEN
172  jc = 1
173  DO 10 j = 1, n
174  IF( unitd )
175  \$ ainvp( jc+j-1 ) = one
176 *
177 * Form the j-th column of A*AINV.
178 *
179  CALL ztpmv( 'Upper', 'No transpose', diag, j, ap,
180  \$ ainvp( jc ), 1 )
181 *
182 * Subtract 1 from the diagonal to form A*AINV - I.
183 *
184  ainvp( jc+j-1 ) = ainvp( jc+j-1 ) - one
185  jc = jc + j
186  10 CONTINUE
187  ELSE
188  jc = 1
189  DO 20 j = 1, n
190  IF( unitd )
191  \$ ainvp( jc ) = one
192 *
193 * Form the j-th column of A*AINV.
194 *
195  CALL ztpmv( 'Lower', 'No transpose', diag, n-j+1, ap( jc ),
196  \$ ainvp( jc ), 1 )
197 *
198 * Subtract 1 from the diagonal to form A*AINV - I.
199 *
200  ainvp( jc ) = ainvp( jc ) - one
201  jc = jc + n - j + 1
202  20 CONTINUE
203  END IF
204 *
205 * Compute norm(A*AINV - I) / (N * norm(A) * norm(AINV) * EPS)
206 *
207  resid = zlantp( '1', uplo, 'Non-unit', n, ainvp, rwork )
208 *
209  resid = ( ( resid*rcond ) / dble( n ) ) / eps
210 *
211  RETURN
212 *
213 * End of ZTPT01
214 *
double precision function dlamch(CMACH)
DLAMCH
Definition: dlamch.f:69
logical function lsame(CA, CB)
LSAME
Definition: lsame.f:53
subroutine ztpmv(UPLO, TRANS, DIAG, N, AP, X, INCX)
ZTPMV
Definition: ztpmv.f:142
double precision function zlantp(NORM, UPLO, DIAG, N, AP, WORK)
ZLANTP returns the value of the 1-norm, or the Frobenius norm, or the infinity norm,...
Definition: zlantp.f:125
Here is the call graph for this function:
Here is the caller graph for this function: