LAPACK  3.10.0
LAPACK: Linear Algebra PACKage

◆ zchkhe_aa()

subroutine zchkhe_aa ( logical, dimension( * )  DOTYPE,
integer  NN,
integer, dimension( * )  NVAL,
integer  NNB,
integer, dimension( * )  NBVAL,
integer  NNS,
integer, dimension( * )  NSVAL,
double precision  THRESH,
logical  TSTERR,
integer  NMAX,
complex*16, dimension( * )  A,
complex*16, dimension( * )  AFAC,
complex*16, dimension( * )  AINV,
complex*16, dimension( * )  B,
complex*16, dimension( * )  X,
complex*16, dimension( * )  XACT,
complex*16, dimension( * )  WORK,
double precision, dimension( * )  RWORK,
integer, dimension( * )  IWORK,
integer  NOUT 
)

ZCHKHE_AA

Purpose:
 ZCHKHE_AA tests ZHETRF_AA, -TRS_AA.
Parameters
[in]DOTYPE
          DOTYPE is LOGICAL array, dimension (NTYPES)
          The matrix types to be used for testing.  Matrices of type j
          (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
          .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
[in]NN
          NN is INTEGER
          The number of values of N contained in the vector NVAL.
[in]NVAL
          NVAL is INTEGER array, dimension (NN)
          The values of the matrix dimension N.
[in]NNB
          NNB is INTEGER
          The number of values of NB contained in the vector NBVAL.
[in]NBVAL
          NBVAL is INTEGER array, dimension (NNB)
          The values of the blocksize NB.
[in]NNS
          NNS is INTEGER
          The number of values of NRHS contained in the vector NSVAL.
[in]NSVAL
          NSVAL is INTEGER array, dimension (NNS)
          The values of the number of right hand sides NRHS.
[in]THRESH
          THRESH is DOUBLE PRECISION
          The threshold value for the test ratios.  A result is
          included in the output file if RESULT >= THRESH.  To have
          every test ratio printed, use THRESH = 0.
[in]TSTERR
          TSTERR is LOGICAL
          Flag that indicates whether error exits are to be tested.
[in]NMAX
          NMAX is INTEGER
          The maximum value permitted for N, used in dimensioning the
          work arrays.
[out]A
          A is COMPLEX*16 array, dimension (NMAX*NMAX)
[out]AFAC
          AFAC is COMPLEX*16 array, dimension (NMAX*NMAX)
[out]AINV
          AINV is COMPLEX*16 array, dimension (NMAX*NMAX)
[out]B
          B is COMPLEX*16 array, dimension (NMAX*NSMAX)
          where NSMAX is the largest entry in NSVAL.
[out]X
          X is COMPLEX*16 array, dimension (NMAX*NSMAX)
[out]XACT
          XACT is COMPLEX*16 array, dimension (NMAX*NSMAX)
[out]WORK
          WORK is COMPLEX*16 array, dimension (NMAX*max(3,NSMAX))
[out]RWORK
          RWORK is DOUBLE PRECISION array, dimension (max(NMAX,2*NSMAX))
[out]IWORK
          IWORK is INTEGER array, dimension (NMAX)
[in]NOUT
          NOUT is INTEGER
          The unit number for output.
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 168 of file zchkhe_aa.f.

171 *
172 * -- LAPACK test routine --
173 * -- LAPACK is a software package provided by Univ. of Tennessee, --
174 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
175 *
176  IMPLICIT NONE
177 *
178 * .. Scalar Arguments ..
179  LOGICAL TSTERR
180  INTEGER NMAX, NN, NNB, NNS, NOUT
181  DOUBLE PRECISION THRESH
182 * ..
183 * .. Array Arguments ..
184  LOGICAL DOTYPE( * )
185  INTEGER IWORK( * ), NBVAL( * ), NSVAL( * ), NVAL( * )
186  DOUBLE PRECISION RWORK( * )
187  COMPLEX*16 A( * ), AFAC( * ), AINV( * ), B( * ),
188  $ WORK( * ), X( * ), XACT( * )
189 * ..
190 *
191 * =====================================================================
192 *
193 * .. Parameters ..
194  DOUBLE PRECISION ZERO
195  parameter( zero = 0.0d+0 )
196  COMPLEX*16 CZERO
197  parameter( czero = ( 0.0d+0, 0.0d+0 ) )
198  INTEGER NTYPES
199  parameter( ntypes = 10 )
200  INTEGER NTESTS
201  parameter( ntests = 9 )
202 * ..
203 * .. Local Scalars ..
204  LOGICAL ZEROT
205  CHARACTER DIST, TYPE, UPLO, XTYPE
206  CHARACTER*3 PATH, MATPATH
207  INTEGER I, I1, I2, IMAT, IN, INB, INFO, IOFF, IRHS,
208  $ IUPLO, IZERO, J, K, KL, KU, LDA, LWORK, MODE,
209  $ N, NB, NERRS, NFAIL, NIMAT, NRHS, NRUN, NT
210  DOUBLE PRECISION ANORM, CNDNUM
211 * ..
212 * .. Local Arrays ..
213  CHARACTER UPLOS( 2 )
214  INTEGER ISEED( 4 ), ISEEDY( 4 )
215  DOUBLE PRECISION RESULT( NTESTS )
216 * ..
217 * .. External Subroutines ..
218  EXTERNAL alaerh, alahd, alasum, xlaenv, zerrhe,
221 * ..
222 * .. Intrinsic Functions ..
223  INTRINSIC max, min
224 * ..
225 * .. Scalars in Common ..
226  LOGICAL LERR, OK
227  CHARACTER*32 SRNAMT
228  INTEGER INFOT, NUNIT
229 * ..
230 * .. Common blocks ..
231  COMMON / infoc / infot, nunit, ok, lerr
232  COMMON / srnamc / srnamt
233 * ..
234 * .. Data statements ..
235  DATA iseedy / 1988, 1989, 1990, 1991 /
236  DATA uplos / 'U', 'L' /
237 * ..
238 * .. Executable Statements ..
239 *
240 * Initialize constants and the random number seed.
241 *
242 * Test path
243 *
244  path( 1: 1 ) = 'Zomplex precision'
245  path( 2: 3 ) = 'HA'
246 *
247 * Path to generate matrices
248 *
249  matpath( 1: 1 ) = 'Zomplex precision'
250  matpath( 2: 3 ) = 'HE'
251  nrun = 0
252  nfail = 0
253  nerrs = 0
254  DO 10 i = 1, 4
255  iseed( i ) = iseedy( i )
256  10 CONTINUE
257 *
258 * Test the error exits
259 *
260  IF( tsterr )
261  $ CALL zerrhe( path, nout )
262  infot = 0
263 *
264 * Set the minimum block size for which the block routine should
265 * be used, which will be later returned by ILAENV
266 *
267  CALL xlaenv( 2, 2 )
268 *
269 * Do for each value of N in NVAL
270 *
271  DO 180 in = 1, nn
272  n = nval( in )
273  IF( n .GT. nmax ) THEN
274  nfail = nfail + 1
275  WRITE(nout, 9995) 'M ', n, nmax
276  GO TO 180
277  END IF
278  lda = max( n, 1 )
279  xtype = 'N'
280  nimat = ntypes
281  IF( n.LE.0 )
282  $ nimat = 1
283 *
284  izero = 0
285  DO 170 imat = 1, nimat
286 *
287 * Do the tests only if DOTYPE( IMAT ) is true.
288 *
289  IF( .NOT.dotype( imat ) )
290  $ GO TO 170
291 *
292 * Skip types 3, 4, 5, or 6 if the matrix size is too small.
293 *
294  zerot = imat.GE.3 .AND. imat.LE.6
295  IF( zerot .AND. n.LT.imat-2 )
296  $ GO TO 170
297 *
298 * Do first for UPLO = 'U', then for UPLO = 'L'
299 *
300  DO 160 iuplo = 1, 2
301  uplo = uplos( iuplo )
302 *
303 * Set up parameters with ZLATB4 for the matrix generator
304 * based on the type of matrix to be generated.
305 *
306  CALL zlatb4( matpath, imat, n, n, TYPE, KL, KU,
307  $ ANORM, MODE, CNDNUM, DIST )
308 *
309 * Generate a matrix with ZLATMS.
310 *
311  srnamt = 'ZLATMS'
312  CALL zlatms( n, n, dist, iseed, TYPE, RWORK, MODE,
313  $ CNDNUM, ANORM, KL, KU, UPLO, A, LDA, WORK,
314  $ INFO )
315 *
316 * Check error code from ZLATMS and handle error.
317 *
318  IF( info.NE.0 ) THEN
319  CALL alaerh( path, 'ZLATMS', info, 0, uplo, n, n, -1,
320  $ -1, -1, imat, nfail, nerrs, nout )
321 *
322 * Skip all tests for this generated matrix
323 *
324  GO TO 160
325  END IF
326 *
327 * For types 3-6, zero one or more rows and columns of
328 * the matrix to test that INFO is returned correctly.
329 *
330  IF( zerot ) THEN
331  IF( imat.EQ.3 ) THEN
332  izero = 1
333  ELSE IF( imat.EQ.4 ) THEN
334  izero = n
335  ELSE
336  izero = n / 2 + 1
337  END IF
338 *
339  IF( imat.LT.6 ) THEN
340 *
341 * Set row and column IZERO to zero.
342 *
343  IF( iuplo.EQ.1 ) THEN
344  ioff = ( izero-1 )*lda
345  DO 20 i = 1, izero - 1
346  a( ioff+i ) = czero
347  20 CONTINUE
348  ioff = ioff + izero
349  DO 30 i = izero, n
350  a( ioff ) = czero
351  ioff = ioff + lda
352  30 CONTINUE
353  ELSE
354  ioff = izero
355  DO 40 i = 1, izero - 1
356  a( ioff ) = czero
357  ioff = ioff + lda
358  40 CONTINUE
359  ioff = ioff - izero
360  DO 50 i = izero, n
361  a( ioff+i ) = czero
362  50 CONTINUE
363  END IF
364  ELSE
365  IF( iuplo.EQ.1 ) THEN
366 *
367 * Set the first IZERO rows and columns to zero.
368 *
369  ioff = 0
370  DO 70 j = 1, n
371  i2 = min( j, izero )
372  DO 60 i = 1, i2
373  a( ioff+i ) = czero
374  60 CONTINUE
375  ioff = ioff + lda
376  70 CONTINUE
377  izero = 1
378  ELSE
379 *
380 * Set the last IZERO rows and columns to zero.
381 *
382  ioff = 0
383  DO 90 j = 1, n
384  i1 = max( j, izero )
385  DO 80 i = i1, n
386  a( ioff+i ) = czero
387  80 CONTINUE
388  ioff = ioff + lda
389  90 CONTINUE
390  END IF
391  END IF
392  ELSE
393  izero = 0
394  END IF
395 *
396 * End generate test matrix A.
397 *
398 *
399 * Set the imaginary part of the diagonals.
400 *
401  CALL zlaipd( n, a, lda+1, 0 )
402 *
403 * Do for each value of NB in NBVAL
404 *
405  DO 150 inb = 1, nnb
406 *
407 * Set the optimal blocksize, which will be later
408 * returned by ILAENV.
409 *
410  nb = nbval( inb )
411  CALL xlaenv( 1, nb )
412 *
413 * Copy the test matrix A into matrix AFAC which
414 * will be factorized in place. This is needed to
415 * preserve the test matrix A for subsequent tests.
416 *
417  CALL zlacpy( uplo, n, n, a, lda, afac, lda )
418 *
419 * Compute the L*D*L**T or U*D*U**T factorization of the
420 * matrix. IWORK stores details of the interchanges and
421 * the block structure of D. AINV is a work array for
422 * block factorization, LWORK is the length of AINV.
423 *
424  lwork = max( 1, ( nb+1 )*lda )
425  srnamt = 'ZHETRF_AA'
426  CALL zhetrf_aa( uplo, n, afac, lda, iwork, ainv,
427  $ lwork, info )
428 *
429 * Adjust the expected value of INFO to account for
430 * pivoting.
431 *
432 c IF( IZERO.GT.0 ) THEN
433 c J = 1
434 c K = IZERO
435 c 100 CONTINUE
436 c IF( J.EQ.K ) THEN
437 c K = IWORK( J )
438 c ELSE IF( IWORK( J ).EQ.K ) THEN
439 c K = J
440 c END IF
441 c IF( J.LT.K ) THEN
442 c J = J + 1
443 c GO TO 100
444 c END IF
445 c ELSE
446  k = 0
447 c END IF
448 *
449 * Check error code from ZHETRF and handle error.
450 *
451  IF( info.NE.k ) THEN
452  CALL alaerh( path, 'ZHETRF_AA', info, k, uplo,
453  $ n, n, -1, -1, nb, imat, nfail, nerrs,
454  $ nout )
455  END IF
456 *
457 *+ TEST 1
458 * Reconstruct matrix from factors and compute residual.
459 *
460  CALL zhet01_aa( uplo, n, a, lda, afac, lda, iwork,
461  $ ainv, lda, rwork, result( 1 ) )
462  nt = 1
463 *
464 *
465 * Print information about the tests that did not pass
466 * the threshold.
467 *
468  DO 110 k = 1, nt
469  IF( result( k ).GE.thresh ) THEN
470  IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
471  $ CALL alahd( nout, path )
472  WRITE( nout, fmt = 9999 )uplo, n, nb, imat, k,
473  $ result( k )
474  nfail = nfail + 1
475  END IF
476  110 CONTINUE
477  nrun = nrun + nt
478 *
479 * Skip solver test if INFO is not 0.
480 *
481  IF( info.NE.0 ) THEN
482  GO TO 140
483  END IF
484 *
485 * Do for each value of NRHS in NSVAL.
486 *
487  DO 130 irhs = 1, nns
488  nrhs = nsval( irhs )
489 *
490 *+ TEST 2 (Using TRS)
491 * Solve and compute residual for A * X = B.
492 *
493 * Choose a set of NRHS random solution vectors
494 * stored in XACT and set up the right hand side B
495 *
496  srnamt = 'ZLARHS'
497  CALL zlarhs( matpath, xtype, uplo, ' ', n, n,
498  $ kl, ku, nrhs, a, lda, xact, lda,
499  $ b, lda, iseed, info )
500  CALL zlacpy( 'Full', n, nrhs, b, lda, x, lda )
501 *
502  srnamt = 'ZHETRS_AA'
503  lwork = max( 1, 3*n-2 )
504  CALL zhetrs_aa( uplo, n, nrhs, afac, lda, iwork,
505  $ x, lda, work, lwork, info )
506 *
507 * Check error code from ZHETRS and handle error.
508 *
509  IF( info.NE.0 ) THEN
510  IF( izero.EQ.0 ) THEN
511  CALL alaerh( path, 'ZHETRS_AA', info, 0,
512  $ uplo, n, n, -1, -1, nrhs, imat,
513  $ nfail, nerrs, nout )
514  END IF
515  ELSE
516 *
517  CALL zlacpy( 'Full', n, nrhs, b, lda, work, lda
518  $ )
519 *
520 * Compute the residual for the solution
521 *
522  CALL zpot02( uplo, n, nrhs, a, lda, x, lda,
523  $ work, lda, rwork, result( 2 ) )
524 *
525 * Print information about the tests that did not pass
526 * the threshold.
527 *
528  DO 120 k = 2, 2
529  IF( result( k ).GE.thresh ) THEN
530  IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
531  $ CALL alahd( nout, path )
532  WRITE( nout, fmt = 9998 )uplo, n, nrhs,
533  $ imat, k, result( k )
534  nfail = nfail + 1
535  END IF
536  120 CONTINUE
537  END IF
538  nrun = nrun + 1
539 *
540 * End do for each value of NRHS in NSVAL.
541 *
542  130 CONTINUE
543  140 CONTINUE
544  150 CONTINUE
545  160 CONTINUE
546  170 CONTINUE
547  180 CONTINUE
548 *
549 * Print a summary of the results.
550 *
551  CALL alasum( path, nout, nfail, nrun, nerrs )
552 *
553  9999 FORMAT( ' UPLO = ''', a1, ''', N =', i5, ', NB =', i4, ', type ',
554  $ i2, ', test ', i2, ', ratio =', g12.5 )
555  9998 FORMAT( ' UPLO = ''', a1, ''', N =', i5, ', NRHS=', i3, ', type ',
556  $ i2, ', test(', i2, ') =', g12.5 )
557 c 9997 FORMAT( ' UPLO = ''', A1, ''', N =', I5, ',', 10X, ' type ', I2,
558 c $ ', test(', I2, ') =', G12.5 )
559  9995 FORMAT( ' Invalid input value: ', a4, '=', i6, '; must be <=',
560  $ i6 )
561  RETURN
562 *
563 * End of ZCHKHE_AA
564 *
subroutine alasum(TYPE, NOUT, NFAIL, NRUN, NERRS)
ALASUM
Definition: alasum.f:73
subroutine xlaenv(ISPEC, NVALUE)
XLAENV
Definition: xlaenv.f:81
subroutine alahd(IOUNIT, PATH)
ALAHD
Definition: alahd.f:107
subroutine alaerh(PATH, SUBNAM, INFO, INFOE, OPTS, M, N, KL, KU, N5, IMAT, NFAIL, NERRS, NOUT)
ALAERH
Definition: alaerh.f:147
subroutine zlarhs(PATH, XTYPE, UPLO, TRANS, M, N, KL, KU, NRHS, A, LDA, X, LDX, B, LDB, ISEED, INFO)
ZLARHS
Definition: zlarhs.f:208
subroutine zerrhe(PATH, NUNIT)
ZERRHE
Definition: zerrhe.f:55
subroutine zlaipd(N, A, INDA, VINDA)
ZLAIPD
Definition: zlaipd.f:83
subroutine zpot02(UPLO, N, NRHS, A, LDA, X, LDX, B, LDB, RWORK, RESID)
ZPOT02
Definition: zpot02.f:127
subroutine zlatb4(PATH, IMAT, M, N, TYPE, KL, KU, ANORM, MODE, CNDNUM, DIST)
ZLATB4
Definition: zlatb4.f:121
subroutine zhet01_aa(UPLO, N, A, LDA, AFAC, LDAFAC, IPIV, C, LDC, RWORK, RESID)
ZHET01_AA
Definition: zhet01_aa.f:124
subroutine zlatms(M, N, DIST, ISEED, SYM, D, MODE, COND, DMAX, KL, KU, PACK, A, LDA, WORK, INFO)
ZLATMS
Definition: zlatms.f:332
subroutine zhetrf_aa(UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO)
ZHETRF_AA
Definition: zhetrf_aa.f:132
subroutine zhetrs_aa(UPLO, N, NRHS, A, LDA, IPIV, B, LDB, WORK, LWORK, INFO)
ZHETRS_AA
Definition: zhetrs_aa.f:132
subroutine zlacpy(UPLO, M, N, A, LDA, B, LDB)
ZLACPY copies all or part of one two-dimensional array to another.
Definition: zlacpy.f:103
Here is the call graph for this function:
Here is the caller graph for this function: