 LAPACK  3.10.0 LAPACK: Linear Algebra PACKage

◆ zchktz()

 subroutine zchktz ( logical, dimension( * ) DOTYPE, integer NM, integer, dimension( * ) MVAL, integer NN, integer, dimension( * ) NVAL, double precision THRESH, logical TSTERR, complex*16, dimension( * ) A, complex*16, dimension( * ) COPYA, double precision, dimension( * ) S, complex*16, dimension( * ) TAU, complex*16, dimension( * ) WORK, double precision, dimension( * ) RWORK, integer NOUT )

ZCHKTZ

Purpose:
ZCHKTZ tests ZTZRZF.
Parameters
 [in] DOTYPE DOTYPE is LOGICAL array, dimension (NTYPES) The matrix types to be used for testing. Matrices of type j (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) = .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used. [in] NM NM is INTEGER The number of values of M contained in the vector MVAL. [in] MVAL MVAL is INTEGER array, dimension (NM) The values of the matrix row dimension M. [in] NN NN is INTEGER The number of values of N contained in the vector NVAL. [in] NVAL NVAL is INTEGER array, dimension (NN) The values of the matrix column dimension N. [in] THRESH THRESH is DOUBLE PRECISION The threshold value for the test ratios. A result is included in the output file if RESULT >= THRESH. To have every test ratio printed, use THRESH = 0. [in] TSTERR TSTERR is LOGICAL Flag that indicates whether error exits are to be tested. [out] A A is COMPLEX*16 array, dimension (MMAX*NMAX) where MMAX is the maximum value of M in MVAL and NMAX is the maximum value of N in NVAL. [out] COPYA COPYA is COMPLEX*16 array, dimension (MMAX*NMAX) [out] S S is DOUBLE PRECISION array, dimension (min(MMAX,NMAX)) [out] TAU TAU is COMPLEX*16 array, dimension (MMAX) [out] WORK WORK is COMPLEX*16 array, dimension (MMAX*NMAX + 4*NMAX + MMAX) [out] RWORK RWORK is DOUBLE PRECISION array, dimension (2*NMAX) [in] NOUT NOUT is INTEGER The unit number for output.

Definition at line 135 of file zchktz.f.

137 *
138 * -- LAPACK test routine --
139 * -- LAPACK is a software package provided by Univ. of Tennessee, --
140 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
141 *
142 * .. Scalar Arguments ..
143  LOGICAL TSTERR
144  INTEGER NM, NN, NOUT
145  DOUBLE PRECISION THRESH
146 * ..
147 * .. Array Arguments ..
148  LOGICAL DOTYPE( * )
149  INTEGER MVAL( * ), NVAL( * )
150  DOUBLE PRECISION S( * ), RWORK( * )
151  COMPLEX*16 A( * ), COPYA( * ), TAU( * ), WORK( * )
152 * ..
153 *
154 * =====================================================================
155 *
156 * .. Parameters ..
157  INTEGER NTYPES
158  parameter( ntypes = 3 )
159  INTEGER NTESTS
160  parameter( ntests = 3 )
161  DOUBLE PRECISION ONE, ZERO
162  parameter( one = 1.0d0, zero = 0.0d0 )
163 * ..
164 * .. Local Scalars ..
165  CHARACTER*3 PATH
166  INTEGER I, IM, IMODE, IN, INFO, K, LDA, LWORK, M,
167  \$ MNMIN, MODE, N, NERRS, NFAIL, NRUN
168  DOUBLE PRECISION EPS
169 * ..
170 * .. Local Arrays ..
171  INTEGER ISEED( 4 ), ISEEDY( 4 )
172  DOUBLE PRECISION RESULT( NTESTS )
173 * ..
174 * .. External Functions ..
175  DOUBLE PRECISION DLAMCH, ZQRT12, ZRZT01, ZRZT02
176  EXTERNAL dlamch, zqrt12, zrzt01, zrzt02
177 * ..
178 * .. External Subroutines ..
179  EXTERNAL alahd, alasum, dlaord, zerrtz, zgeqr2, zlacpy,
180  \$ zlaset, zlatms, ztzrzf
181 * ..
182 * .. Intrinsic Functions ..
183  INTRINSIC dcmplx, max, min
184 * ..
185 * .. Scalars in Common ..
186  LOGICAL LERR, OK
187  CHARACTER*32 SRNAMT
188  INTEGER INFOT, IOUNIT
189 * ..
190 * .. Common blocks ..
191  COMMON / infoc / infot, iounit, ok, lerr
192  COMMON / srnamc / srnamt
193 * ..
194 * .. Data statements ..
195  DATA iseedy / 1988, 1989, 1990, 1991 /
196 * ..
197 * .. Executable Statements ..
198 *
199 * Initialize constants and the random number seed.
200 *
201  path( 1: 1 ) = 'Zomplex precision'
202  path( 2: 3 ) = 'TZ'
203  nrun = 0
204  nfail = 0
205  nerrs = 0
206  DO 10 i = 1, 4
207  iseed( i ) = iseedy( i )
208  10 CONTINUE
209  eps = dlamch( 'Epsilon' )
210 *
211 * Test the error exits
212 *
213  IF( tsterr )
214  \$ CALL zerrtz( path, nout )
215  infot = 0
216 *
217  DO 70 im = 1, nm
218 *
219 * Do for each value of M in MVAL.
220 *
221  m = mval( im )
222  lda = max( 1, m )
223 *
224  DO 60 in = 1, nn
225 *
226 * Do for each value of N in NVAL for which M .LE. N.
227 *
228  n = nval( in )
229  mnmin = min( m, n )
230  lwork = max( 1, n*n+4*m+n )
231 *
232  IF( m.LE.n ) THEN
233  DO 50 imode = 1, ntypes
234  IF( .NOT.dotype( imode ) )
235  \$ GO TO 50
236 *
237 * Do for each type of singular value distribution.
238 * 0: zero matrix
239 * 1: one small singular value
240 * 2: exponential distribution
241 *
242  mode = imode - 1
243 *
244 * Test ZTZRQF
245 *
246 * Generate test matrix of size m by n using
247 * singular value distribution indicated by `mode'.
248 *
249  IF( mode.EQ.0 ) THEN
250  CALL zlaset( 'Full', m, n, dcmplx( zero ),
251  \$ dcmplx( zero ), a, lda )
252  DO 30 i = 1, mnmin
253  s( i ) = zero
254  30 CONTINUE
255  ELSE
256  CALL zlatms( m, n, 'Uniform', iseed,
257  \$ 'Nonsymmetric', s, imode,
258  \$ one / eps, one, m, n, 'No packing', a,
259  \$ lda, work, info )
260  CALL zgeqr2( m, n, a, lda, work, work( mnmin+1 ),
261  \$ info )
262  CALL zlaset( 'Lower', m-1, n, dcmplx( zero ),
263  \$ dcmplx( zero ), a( 2 ), lda )
264  CALL dlaord( 'Decreasing', mnmin, s, 1 )
265  END IF
266 *
267 * Save A and its singular values
268 *
269  CALL zlacpy( 'All', m, n, a, lda, copya, lda )
270 *
271 * Call ZTZRZF to reduce the upper trapezoidal matrix to
272 * upper triangular form.
273 *
274  srnamt = 'ZTZRZF'
275  CALL ztzrzf( m, n, a, lda, tau, work, lwork, info )
276 *
277 * Compute norm(svd(a) - svd(r))
278 *
279  result( 1 ) = zqrt12( m, m, a, lda, s, work,
280  \$ lwork, rwork )
281 *
282 * Compute norm( A - R*Q )
283 *
284  result( 2 ) = zrzt01( m, n, copya, a, lda, tau, work,
285  \$ lwork )
286 *
287 * Compute norm(Q'*Q - I).
288 *
289  result( 3 ) = zrzt02( m, n, a, lda, tau, work, lwork )
290 *
291 * Print information about the tests that did not pass
292 * the threshold.
293 *
294  DO 40 k = 1, ntests
295  IF( result( k ).GE.thresh ) THEN
296  IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
297  \$ CALL alahd( nout, path )
298  WRITE( nout, fmt = 9999 )m, n, imode, k,
299  \$ result( k )
300  nfail = nfail + 1
301  END IF
302  40 CONTINUE
303  nrun = nrun + 3
304  50 CONTINUE
305  END IF
306  60 CONTINUE
307  70 CONTINUE
308 *
309 * Print a summary of the results.
310 *
311  CALL alasum( path, nout, nfail, nrun, nerrs )
312 *
313  9999 FORMAT( ' M =', i5, ', N =', i5, ', type ', i2, ', test ', i2,
314  \$ ', ratio =', g12.5 )
315 *
316 * End if ZCHKTZ
317 *
double precision function dlamch(CMACH)
DLAMCH
Definition: dlamch.f:69
subroutine alasum(TYPE, NOUT, NFAIL, NRUN, NERRS)
ALASUM
Definition: alasum.f:73
subroutine alahd(IOUNIT, PATH)
ALAHD
Definition: alahd.f:107
double precision function zqrt12(M, N, A, LDA, S, WORK, LWORK, RWORK)
ZQRT12
Definition: zqrt12.f:97
subroutine zerrtz(PATH, NUNIT)
ZERRTZ
Definition: zerrtz.f:54
double precision function zrzt02(M, N, AF, LDA, TAU, WORK, LWORK)
ZRZT02
Definition: zrzt02.f:91
double precision function zrzt01(M, N, A, AF, LDA, TAU, WORK, LWORK)
ZRZT01
Definition: zrzt01.f:98
subroutine zlatms(M, N, DIST, ISEED, SYM, D, MODE, COND, DMAX, KL, KU, PACK, A, LDA, WORK, INFO)
ZLATMS
Definition: zlatms.f:332
subroutine zgeqr2(M, N, A, LDA, TAU, WORK, INFO)
ZGEQR2 computes the QR factorization of a general rectangular matrix using an unblocked algorithm.
Definition: zgeqr2.f:130
subroutine zlacpy(UPLO, M, N, A, LDA, B, LDB)
ZLACPY copies all or part of one two-dimensional array to another.
Definition: zlacpy.f:103
subroutine zlaset(UPLO, M, N, ALPHA, BETA, A, LDA)
ZLASET initializes the off-diagonal elements and the diagonal elements of a matrix to given values.
Definition: zlaset.f:106
subroutine ztzrzf(M, N, A, LDA, TAU, WORK, LWORK, INFO)
ZTZRZF
Definition: ztzrzf.f:151
subroutine dlaord(JOB, N, X, INCX)
DLAORD
Definition: dlaord.f:73
Here is the call graph for this function:
Here is the caller graph for this function: